Electronic Elements and Circuits
Voltage

- Potential Energy from Charge Attraction
- Separation of Charge results in Stored Energy

Electrical Potential energy is Measured in Volts (V) whose units are Joules/Coulomb

- $1 \text{ eV} = 1.6 \times 10^{-19} \text{ Joules}$
- Voltage is sometimes called, “Electromotive Force” or e.m.f.
- The notation for charge is Q
Voltage Sources

- Batteries store electrical potential energy by chemically separating ions
- Salts separated across semi permeable membranes may be used as “batteries.”

- Symbol for a battery: \[\text{\includegraphics[width=0.2\textwidth]{battery}}\]
- Generic Voltage Source: \[\text{\includegraphics[width=0.2\textwidth]{voltage_source}}\]
- Time Varying Voltage Source: \[\text{\includegraphics[width=0.2\textwidth]{voltage_source}}\]
Current

- Electrical Kinetic Energy is called Current
- Current is the motion of charge
- The Electrical Engineers symbol for current is i (*).
- Current Flows “through” conductors
- Current is therefore dQ/dt
- The Unit of Current is “Amperes” or amps.

Symbol for a current source:

* Hence, engineers use “j” to denote $\sqrt{-1}$
Resistance

- Current flowing through a path experiences *Resistance*.
- Less current flow through higher resistance:
 - Ohm’s Law: \(i = \frac{V}{R} \)
 - Larger resistance -> less current
- Energy is dissipated (lost) to that resistance
- As charge flows the stored energy is dissipated
- The *RATE* of Energy dissipation is measured in Watts (power, Joules/second)
- \(iV = \text{(Joules/coulomb)}(\text{coulombs/s}) = \text{Joules/s} \).
Resistance

■ Insulators allow little or no current flow

■ Conductors pass current easily.
 ❏ conductor symbol:

■ Typical “Resistors” range in values from about 1 Ohm to about 10E6 Ohm (10Megohm)
 ❏ resistor symbol:

■ A 1 Ohm resistor allows 1 Ampere of current to flow when 1 Volt is applied across it.
Circuit

Circuits always show the complete path for current flow

Kirchhoff’s Laws:

- **KCL**: Current through any node adds to zero
 - any two terminal device is a node

- **KVL**: Voltage around any loop adds to zero

Both laws are an expression of conservation of energy
Series Circuit - Voltage Divider

- In a series circuit **KVL** says that $V_s = V_1 + V_2$
- **KCL** says that i is the same in R_1 and R_2
- Ohms law states that $V_1 = iR_1$ and $V_2 = iR_2$
- Therefore: $V_s = i(R_1+R_2)$

It follows that $V_2 = V_s \left(\frac{R_2}{R_1+R_2}\right)$
Parallel Circuit = Current Divider

- **KCL** says that $i = i_1 + i_2$
- **KVL** says that $V_1 = V_2$: $V_s = i_1 R_1 = i_2 R_2$
- The apparent resistance is: $V_s/(i_1 + i_2)$

$$R_\parallel = \frac{V_s}{i_1+i_2} = \frac{V_s}{V_s \frac{1}{R_1} + \frac{V_s}{R_2}}$$

$$= \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}} = \frac{R_1 \cdot R_2}{R_1 + R_2}$$
Norton and Thévenin Equivalent

- Real voltage and current sources have internal resistance

In a real current source, as Load resistance increases, current drops

In a real voltage source, as Load resistance decreases, voltage drops
Capacitor

- When voltage is applied across an insulator, charge moves onto the insulator.

- If the voltage source is removed, the separated charge stores potential energy.

- Capacitance measures the amount of energy stored by separated charge: $C = \frac{Q}{V}$

- Capacitance is measured in Farads.
Capacitor (cont’d)

■ If charge is applied to one side of the capacitor, equal and opposite charge will move to the other side.

■ This results in a net current “through” the capacitor.

\[Q = CV \]

\[\frac{dQ}{dt} = i = C \frac{dV}{dt} \]

■ This appears similar to Ohm’s law.
Laplace Transform

- Note that: \(d(Ae^{st}) = sAe^{st} \)
- Finding the derivative of a function of the form \(Ae^{st} \) is like multiplying by \(s \)
- Finding the integral is like dividing by \(s \)
- Applying the Laplace transform typically reduces differential equations to simple algebra.
Capacitors and Sinusoids

Let: \(V(t) = A \cos(\omega t) \):

For a capacitor:

\[
\begin{align*}
 i_c &= C \frac{dv}{dt} = -\omega CA \sin(\omega t) \\
 -\omega CA \sin(\omega t) &= \omega CA \cos(\omega t - 90^\circ) \\
 V &= \frac{A \cos(\omega t)}{\omega CA \cos(\omega t - 90^\circ)} = \frac{\cos(\omega t)}{\omega C \cos(\omega t - 90^\circ)} \\
 i_c &= \frac{A \cos(\omega t)}{\omega CA \cos(\omega t - 90^\circ)} = \frac{\cos(\omega t)}{\omega C \cos(\omega t - 90^\circ)}
\end{align*}
\]

A capacitor looks like a resistance whose magnitude goes as \(1/\omega C \)

A capacitor introduces a 90° phase difference between current and Voltage.
Capacitors and Laplace

Let \(V(t) = Ae^{st} \)

\[\frac{dV}{dt} = sAe^{st} \]

Therefore \(i = sCAe^{st} \)

\[\frac{V}{i} = \frac{Ae^{st}}{sCAe^{st}} = \frac{1}{sC}. \]

A capacitor acts like a resistance whose value depends on \(C \) and \(s \)!
Capacitor Demo

Wire

Aluminum Foil

\[C = \frac{\varepsilon_0 A}{D} \]

\[\varepsilon_0 \approx 8.854 \times 10^{-12} \quad F/m \]

Typical Tape Thickness \(~5E-5\) m
Laplace and Sinusoids

Through Euler’s formula with $s = i\omega$ (or $j\omega$):

$$Ae^{st} = Ae^{j\omega t} = A(\cos(\omega t) + j\sin(\omega t))$$

Letting: $V(t) = A\cos(\omega t)$

$$= \Re[Ae^{j\omega t}]$$

we see that: $i_c = sCAe^{st} = j\omega CA(\cos(\omega t) + j\sin(\omega t))$

$$= j\omega CA \cos(\omega t) - \omega CA \sin(\omega t)$$

Whose real part is simply $i_c = -\omega CA \sin(\omega t)$ as before.
Impedance

- **Resistance** is the proportionality between constant current and constant Voltage.
 \[V = iR \]

- **Impedance** is the ratio between time-varying Voltage and time-varying current.
 \[V = IZ \]

Noting that \(Z, I \) and \(V \) may be complex values

- \(Z \) has a magnitude in Ohms, but may also include a phase.
Inductance

- Current creates a magnetic field about the conductor

- Time-varying Currents create a Time-Varying Field

- Time varying Magnetic Fields generate an e.m.f. that induces a time-varying current in conductors

- The e.m.f. is proportional to the rate of magnetic field change:

 \[e.m.f. = k \frac{dB}{dt} \]
Inductors

Commercial Inductors are simply coils of wire.

Inductor Circuit Symbol:

or
Inductors

- The magnetic field created by each loop of a coil is coupled to all of the other loops.
- In general, the magnetic field created by a time-varying current opposes the same current flow in the other coils.
- The result is that:

\[V_L = L \frac{di}{dt} \]

where \(V_L \) is the voltage across the inductor and \(L \) is the inductance value (in Henries).
Frequency Characteristics of Inductors

Following the same reasoning as we used for a capacitor. Let: \(i = Ae^{st} \), and \(s = j\omega \)

\[V = sL Ae^{st} \]

Thus

\[
\begin{align*}
 i_L &= Ae^{st} \\
 V_L &= L \frac{s^2 Ae^{st}}{Ae^{st}} \\
 &= sL.
\end{align*}
\]

or:

\[
\begin{align*}
 i_L &= \Re[Ae^{j\omega t}] = A\cos(\omega t) \\
 \frac{d(i_L)}{dt} &= -\omega A\sin(\omega t) \\
 V_L &= L\Re[-\omega A\sin(\omega t) / A\cos(\omega t)].
\end{align*}
\]

An inductor behaves like a resistor of magnitude \(sL \) that introduces a +90° phase shift.
Complex Impedance

- Both Capacitors and Inductors have complex impedance: V/I is a complex quantity.

- For a Capacitor, $V/I = 1/sC$.

- For an Inductor, $V/I = sL$.

- In a circuit, we can replace all inductors and capacitors by their complex impedance:

 ![Circuit Diagrams]

 - The circuits can then be analyzed with KVL and KCL.
Example

This is just a Voltage Divider circuit

\[v_{\text{out}} = v_{\text{in}} \left(\frac{1/sC}{R + 1/sC} \right) \]

\[\frac{v_{\text{out}}}{v_{\text{in}}} = \frac{1}{sRC + 1} \]
Diode
Making Signals Bigger

- Physiological signals are too small to observe directly
- Passive devices (transformer)

\[v_{in} i_{in} = v_{out} i_{out} \]
Amplifiers

- Generally: Total power is increased
 \[v_{in} i_{in} < v_{out} i_{out} \]

- Amplifiers require an added source of energy

\[v_{be} \approx 0.6 \text{ Volts} \]

Transistor

\[i_e = i_b + i_c \]
Ground

- Ground is any selected node in a circuit

- Usually, ground is selected as either one side of the input signal or the power supply.

- All remaining Voltages are compared to Ground.
Operational Amplifier

■ Ideal Op Amp
- infinite gain
- No current flows between +in and -in

■ Real Op Amp
- maximum output Voltage \approx the power supply
- gain $> 1\text{E}4$
- input current $<< 1\mu\text{A}$

On the Op Amp:
- $+$, $+\text{in}$, $v+$ are used equivalently
- $-$, $-\text{in}$, $v-$ are used equivalently
Datasheet

TL081, TL081A, TL081B, TL082, TL082A, TL082B
TL082Y, TL084, TL084A, TL084B, TL084Y
JFET-INPUT OPERATIONAL AMPLIFIERS
SLOS081E – FEBRUARY 1977 – REVISED FEBRUARY 1999

- Low Power Consumption
- Wide Common-Mode and Differential Voltage Ranges
- Low Input Bias and Offset Currents
- Output Short-Circuit Protection
- Low Total Harmonic Distortion . . . 0.003% Typ

- High Input Impedance . . . JFET-Input Stage
- Latch-Up-Free Operation
- High Slew Rate . . . 13 V/μs Typ
- Common-Mode Input Voltage Range Includes V_{CC+}

description

The TL08x JFET-input operational amplifier family is designed to offer a wider selection than any previously developed operational amplifier family. Each of these JFET-input operational amplifiers incorporates well-matched, high-voltage JFET and bipolar transistors in a monolithic integrated circuit. The devices feature high slew rates, low input bias and offset currents, and low offset voltage temperature coefficient. Offset adjustment and external compensation options are available within the TL08x family.

The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized for operation from −40°C to 85°C. The Q-suffix devices are characterized for operation from −40°C to 125°C. The M-suffix devices are characterized for operation over the full military temperature range of −55°C to 125°C.

symbols

The symbol diagrams for TL081 and TL082 are shown below.

- TL081
- TL082 (EACH AMPLIFIER)

OFFSET N1

IN+

IN−

OFFSET N2

OUT

IN+

IN−

OUT
Datasheet (cont’d)

electrical characteristics, $V_{CC} = \pm 15$ V (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>T_A</th>
<th>TL081C</th>
<th>TL082C</th>
<th>TL084C</th>
<th>TL081AC</th>
<th>TL082AC</th>
<th>TL084AC</th>
<th>TL081BC</th>
<th>TL082BC</th>
<th>TL084BC</th>
<th>TL081I</th>
<th>TL082I</th>
<th>TL084I</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IO} Input offset voltage</td>
<td>$V_O = 0$</td>
<td></td>
<td>25°C</td>
<td>3</td>
<td>15</td>
<td>3</td>
<td>15</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>$R_S = 50 \Omega$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Full range</td>
<td></td>
<td>20</td>
<td>7.5</td>
<td>5</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α_{VIO} Temperature coefficient of input offset voltage</td>
<td>$V_O = 0$</td>
<td></td>
<td>25°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>$\mu V/°C$</td>
</tr>
<tr>
<td></td>
<td>$R_S = 50 \Omega$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Full range</td>
<td></td>
<td>18</td>
<td></td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{IO} Input offset current†</td>
<td>$V_O = 0$</td>
<td></td>
<td>25°C</td>
<td>5</td>
<td>200</td>
<td>5</td>
<td>100</td>
<td>5</td>
<td>100</td>
<td>5</td>
<td>100</td>
<td>10</td>
<td>2</td>
<td>2</td>
<td>pA</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>I_{IB} Input bias current†</td>
<td>$V_O = 0$</td>
<td></td>
<td>25°C</td>
<td>30</td>
<td>200</td>
<td>30</td>
<td>200</td>
<td>30</td>
<td>200</td>
<td>30</td>
<td>200</td>
<td>30</td>
<td>200</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>V_{ICR} Common-mode input voltage range</td>
<td>$R_L = 10 , k\Omega$</td>
<td>25°C</td>
<td>±12</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>$R_L = 1 , k\Omega$</td>
<td></td>
<td>±12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$R_L \geq 2 , k\Omega$</td>
<td></td>
<td>±12</td>
<td></td>
</tr>
<tr>
<td>V_{OM} Maximum peak output voltage swing</td>
<td>$V_O = \pm 10 , V$</td>
<td>25°C</td>
<td>±13.5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>±12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$R_L = 10 , k\Omega$</td>
<td></td>
<td>±12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$R_L = 1 , k\Omega$</td>
<td></td>
<td>±12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$R_L \geq 2 , k\Omega$</td>
<td></td>
<td>±12</td>
<td></td>
</tr>
<tr>
<td>A_{VD} Large-signal differential voltage amplification</td>
<td>$V_O = \pm 10 , V$, $R_L \geq 2 , k\Omega$</td>
<td>25°C</td>
<td>±13.5</td>
<td>V/mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>±12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$R_L = 10 , k\Omega$</td>
<td></td>
<td>±12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$R_L = 1 , k\Omega$</td>
<td></td>
<td>±12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$R_L \geq 2 , k\Omega$</td>
<td></td>
<td>±12</td>
<td></td>
</tr>
<tr>
<td>B_1 Unity-gain bandwidth</td>
<td></td>
<td>25°C</td>
<td>±3</td>
<td>MHz</td>
</tr>
<tr>
<td>r_i Input resistance</td>
<td></td>
<td>25°C</td>
<td>10¹²</td>
<td>Ω</td>
</tr>
<tr>
<td>$CMRR$ Common-mode rejection ratio</td>
<td>$V_IC = V_ICRmin$, $V_O = 0$, $R_S = 50 \Omega$</td>
<td>25°C</td>
<td>70</td>
<td>70</td>
<td>75</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>k_{SVR} Supply voltage rejection ratio ($\Delta V_{CC} / \Delta V_{IO}$)</td>
<td>$V_{CC} = \pm 15 , V$ to $\pm 9 , V$, $V_O = 0$, $R_S = 50 \Omega$</td>
<td>25°C</td>
<td>70</td>
<td>70</td>
<td>80</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>I_{CC} Supply current (per amplifier)</td>
<td>$V_O = 0$, No load</td>
<td>25°C</td>
<td>1.4</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>V_{O1}/V_{O2} Crosstalk attenuation</td>
<td>$A_{VD} = 100$</td>
<td>25°C</td>
<td>120</td>
<td>dB</td>
</tr>
</tbody>
</table>

† All characteristics are measured under open-loop conditions with zero common-mode voltage unless otherwise specified. Full range for T_A is $0 \, ^°C$ to $70 \, ^°C$ for TL081C, TL081AC, TL082C and $-40 \, ^°C$ to $85 \, ^°C$ for TL084I.

†† Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive as shown in Figure 17. Pulse techniques must be used that maintain the junction temperature as close to the ambient temperature as possible.
Datasheet (cont’d)

Absolute Maximum Ratings Over Operating Free-Air Temperature Range (Unless Otherwise Noted)†

<table>
<thead>
<tr>
<th></th>
<th>TL08_C</th>
<th>TL08_AC</th>
<th>TL08_I</th>
<th>TL084Q</th>
<th>TL08_M</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage, (V_{CC+}) (see Note 1)</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>V</td>
</tr>
<tr>
<td>Supply voltage (V_{CC-}) (see Note 1)</td>
<td>−18</td>
<td>−18</td>
<td>−18</td>
<td>−18</td>
<td>−18</td>
<td>V</td>
</tr>
<tr>
<td>Differential input voltage, (V_{ID}) (see Note 2)</td>
<td>±30</td>
<td>±30</td>
<td>±30</td>
<td>±30</td>
<td>±30</td>
<td>V</td>
</tr>
<tr>
<td>Input voltage, (V_I) (see Notes 1 and 3)</td>
<td>±15</td>
<td>±15</td>
<td>±15</td>
<td>±15</td>
<td>±15</td>
<td>V</td>
</tr>
<tr>
<td>Duration of output short circuit (see Note 4)</td>
<td>unlimited</td>
<td>unlimited</td>
<td>unlimited</td>
<td>unlimited</td>
<td>unlimited</td>
<td></td>
</tr>
<tr>
<td>Continuous total power dissipation</td>
<td>See Dissipation Rating Table</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating free-air temperature range, (T_A)</td>
<td>0 to 70</td>
<td>−40 to 85</td>
<td>−40 to 125</td>
<td>−55 to 125</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Storage temperature range, (T_{STG})</td>
<td>−65 to 150</td>
<td>−65 to 150</td>
<td>−65 to 150</td>
<td>−65 to 150</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Case temperature for 60 seconds, (T_C)</td>
<td>FK package</td>
<td></td>
<td></td>
<td></td>
<td>260</td>
<td>°C</td>
</tr>
<tr>
<td>Lead temperature 1.6 mm (1/16 inch) from case for 60 seconds</td>
<td>J or JG package</td>
<td></td>
<td></td>
<td></td>
<td>300</td>
<td>°C</td>
</tr>
<tr>
<td>Lead temperature 1.6 mm (1/16 inch) from case for 10 seconds</td>
<td>D, N, P, or PW package</td>
<td>260</td>
<td>260</td>
<td>260</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES:
1. All voltage values, except differential voltages, are with respect to the midpoint between \(V_{CC+} \) and \(V_{CC-} \).
2. Differential voltages are at \(\text{IN}+ \) with respect to \(\text{IN}− \).
3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
4. The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.
Op Amp Non-linear Operation

- “Open Loop” mode.
- E.g., “Comparator”
- If: +in>-in then $v_{out} \approx v_{pos}$
- If: +in<-in then $v_{out} \approx v_{neg}$
Multivibrator
Linear Operation for Op Amps

■ Negative Feedback
■ $+_{in} \approx -_{in}$
■ $-v_{cc} < v_{out} < +v_{cc}$

■ Voltage at inverting ($v-$, or $-_{in}$) and non-inverting ($v+$, or $+_{in}$) inputs is equal.
■ No current flows between these inputs
■ v_{out} is adjusted as needed for the above to be true.
Inverting Amplifier

In these slides, -\(in\) is the Voltage at the inverting input of the op amp (with respect to ground), and +\(in\) is the voltage at the non-inverting input.

In this circuit, negative feedback is used to ensure that \(v_–\) and \(v_+\) are kept equal. In this case, they are kept at ground.

Because no current can flow between the inverting (–) and non-inverting (+) inputs to the op amp, the current through \(R_2\) must equal \(iR_1\). Therefore the Voltage across \(R_2\) must equal \(R_2 \times iR_1\). This Voltage must therefore be sourced by the output of the op amp:

\[
v_{out} = -iR_1R_2 = -R_2 \frac{v_{in}}{R_1}
\]

\[
\frac{v_{out}}{v_{in}} = -R_2 \frac{R_1}{R_1}
\]
In an op amp, v_{out} is controlled by the difference between $-in$ and $+in$. The output Voltage is fed back (negative feedback) to the $v-$ input so that the $(+in - -in) \approx 0$.

No current flows between $+in$ and $-in$ therefore, in this case, the current through $R1$ also goes through $R2$. The energy to supply that current is provided by the op amp (actually from its power supplies).

Notice the direction of the current through $R2$: when v_{in} is positive, v_{out} must be negative.

From the perspective of the input source, the op amp can be modeled as a resistor of value, $R1$.
At first blush, this very common op amp circuit seems odd. After all, it is clear that if $-in$ and $+in$ are equal $v_{out} = v_{in}$.

What makes this useful, is that no matter what load v_{out} is connected to, the op amp ensures that no current flows into the $+in$ input. The Voltage follower *isolates* the input source from the load driven by v_{out}. This means that the input source is not altered by driving a load. Essentially no current flows out of the input source (which therefore loses no energy).
Non-Inverting Amplifier

In this case the -in input is going to be set to \(v_{in} \) by the output Voltage source of the op amp. This means that \(v_{out} \) must be equal to the Voltage across \(R_2 \), plus the Voltage across \(R_1 \) (which is \(v_{in} \)).

If \(v_{in} \) is positive the current flows in the direction shown. This means that \(v_{out} \) also is positive.

\[
v_{out} = v_{in} + i_{R1} R_2
\]

\[
= v_{in} + \frac{v_{in}}{R_1} R_2
\]

\[
= v_{in} \left(1 + \frac{R_2}{R_1} \right)
\]

\[
\frac{v_{out}}{v_{in}} = 1 + \frac{R_2}{R_1} = \frac{R_1 + R_2}{R_1}
\]
Inverting Summing Amplifier

The current through R4 is equal to the sum of the currents through R1, R2 and R3 (\(KCL\)).
Differentiator and Integrator

\[
\begin{align*}
\frac{v_{out}}{v_{in}} &= \frac{Z_2}{Z_1} \\
\frac{v_{out}}{v_{in}} &= \frac{-1/sC}{R} \\
&= \frac{-1}{sRC} \\
v_o(t) &= \frac{-1}{RC} \int_0^t v_{in}(t)dt + v_0(0)
\end{align*}
\]

\[
\begin{align*}
v_o(t) &= -RC \frac{dv_{in}(t)}{dt}
\end{align*}
\]
A “difference amplifier” amplifies the difference in voltage between to points, \(v_1 \) and \(v_2 \), rejecting any Voltage they have in common.

The current through \(R_1 \), \(iR_1 \), is \((v_1 - v_+) / R_1 \), and is the same as the current through \(R_f \), which is \((v_+ - v_{out}) / R_2 \).

The Voltage divider at the non-inverting input ensures that:
\[
 v_+ = v_2 \left(\frac{R_g}{R_2 + R_g} \right).
\]

\[
 v_{out} = v_2 \frac{R_g}{R_2 + R_g} + v_2 \frac{R_f R_g}{R_1 (R_2 + R_g)} - v_1 \frac{R_f}{R_1}
\]

\[
 v_{out} = v_2 \left(\frac{R_1 R_g}{R_1 (R_2 + R_g)} + \frac{R_f R_g}{R_1 (R_2 + R_g)} \right) - v_1 \frac{R_f}{R_1}
\]

\[
 R_f v_1 - v_2 \frac{R_f R_g}{R_2 + R_g} = v_2 \frac{R_1 R_g}{R_2 + R_g} - R_1 v_{out}
\]

\[
 R_1 v_{out} = v_2 \frac{R_1 R_g}{R_2 + R_g} + v_2 \frac{R_f R_g}{R_2 + R_g} - R_f v
\]

If \(R_1 = R_2 \) and \(R_f = R_g \):

\[
 v_{out} = (v_2 - v_1) \frac{R_f}{R_1}
\]
An instrumentation amplifier is essentially a difference amplifier whose inputs are isolated from the source by Voltage followers. Virtually no current flows between v_1 and v_2.

Why? Because any difference in Voltage between the v_1 and v_2 terminals of the first op amps must be matched by the Voltage across the two $v-$ terminals. This appears across R3. The current to produce this drop must come through the two R2 resistors. If they are large that current will create a large Voltage across them.
Integrated Instrumentation Amplifier

FEATURES
- LOW OFFSET VOLTAGE: 50μV max
- LOW DRIFT: 0.25μV/°C max
- LOW INPUT BIAS CURRENT: 2nA max
- HIGH COMMON-MODE REJECTION: 115dB min
- INPUT OVER-VOLTAGE PROTECTION: ±40V
- WIDE SUPPLY RANGE: ±2.25 to ±18V
- LOW QUIESCENT CURRENT: 3mA max
- 8-PIN PLASTIC AND SOIC-16

APPLICATIONS
- BRIDGE AMPLIFIER
- THERMOCOUPLE AMPLIFIER
- RTD SENSOR AMPLIFIER
- MEDICAL INSTRUMENTATION
- DATA ACQUISITION

DESCRIPTION

The INA114 is a low cost, general purpose instrumentation amplifier offering excellent accuracy. Its versatile 3-op amp design and small size make it ideal for a wide range of applications.

A single external resistor sets any gain from 1 to 10,000. Internal input protection can withstand up to ±40V without damage.

The INA114 is laser trimmed for very low offset voltage (50μV), drift (0.25μV/°C) and high common-mode rejection (115dB at G = 1000). It operates with power supplies as low as ±2.25V, allowing use in battery operated and single 5V supply systems. Quiescent current is 3mA maximum.

The INA114 is available in 8-pin plastic and SOIC-16 surface-mount packages. Both are specified for the −40°C to +85°C temperature range.

By making the amplifier on a single piece of silicon, the manufacturer can ensure that all of the resistors are matched precisely. In turn, this makes sure that common mode signals are heavily attenuated.
Second Order Filter

\[f_0 = 100 \, \text{Hz} \]

\[f_0 = 10 \, \text{kHz} \]
Second Order Filter Analysis

By KCL:

\[
\frac{(v_{in} - v_a)}{Z_1} = \frac{(v_a - v_{out})}{Z_2} + \frac{(v_a - v_{out})}{Z_3}, \text{ and}
\]

\[
\frac{(v_a - v_{out})}{Z_2} = \frac{v_{out}}{Z_4}
\]

Although the algebra is tedious, these can be solved for \(\frac{v_{out}}{v_{in}} \):

\[
\frac{v_{out}}{v_{in}} = \frac{Z_3 Z_4}{Z_3 Z_4 + Z_2 Z_3 + Z_1 Z_3 + Z_1 Z_2}
\]
Low Pass Filter

\[\frac{v_{out}}{v_{in}} = \frac{Z_3 Z_4}{Z_3 Z_4 + Z_2 Z_3 + Z_1 Z_3 + Z_1 Z_2} \]

\[Z_1 = Z_2 = R, \quad Z_3 = Z_4 = \frac{1}{sC} \]

\[\frac{v_{out}}{v_{in}} = \frac{1}{s^2 C^2} + \frac{R}{sC} + \frac{R}{sC} + R^2 \]

\[= \frac{1}{1 + 2sRC + s^2 R^2 C^2} = \frac{1}{(1 + sRC)^2} \]
High Pass Filter

\[
\frac{v_{\text{out}}}{v_{\text{in}}} = \frac{Z_3 Z_4}{Z_3 Z_4 + Z_2 Z_3 + Z_1 Z_3 + Z_1 Z_2}
\]

\[
Z_1 = Z_2 = \frac{1}{sC}, \quad Z_3 = Z_4 = R
\]

\[
\frac{v_{\text{out}}}{v_{\text{in}}} = \frac{R^2}{R^2 + \frac{R}{sC} + \frac{R}{sC} + \frac{1}{s^2 C^2}}
\]

\[
= \frac{R^2 s^2 C^2}{1 + 2sRC + s^2 R^2 C^2} = \frac{(sRC)^2}{(1 + sRC)^2}
\]
First and Second Order Filters

Log$_{10}$(Frequency)

V_{out}/V_{in}

1st Order Low Pass
2nd Order Low Pass
1st Order High Pass
2nd Order High Pass