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Background

• Nyquist/Shannon sampling theory: A band-limited signal of interest with
highest frequency B can be exactly reconstructed from its uniformly
spaced samples if the rate of sampling exceeds 2B (Nyquist rate).
This is independently discovered by Kotelnikov, Nyquist, Shannon, and
Whitaker.

• The sampling rate needs to be very high if the original signal contains
high frequencies (to avoid aliasing). The excessive number of samples
make compression a necessary prior to storage or transmission. In
addition, increasing the sampling rate is very expensive, time consuming
(MRI), or dangerous (CT).

• On the other hand, the chance is that most signals we are interested in are
highly compressible, namely, they can be represented by a set of sparse or
nearly sparse coefficients. CS exploits this feature of signals and thus
allows a sampling rate significantly lower than the Nyquist rate.
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Efficient image/signal acquisition

Wish to acquire a digital object u ∈ Rn from m measurements

bk = 〈u,ak〉, k = 1, · · · ,m

• Few sensors

• Measurements are very expensive

• Measurements process is slow (MRI)

• · · ·

• Is this possible with m << n?

• Which measurements should we take?

• How should we reconstruct?
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CS-MRI1

1Candes-Romberg-Tao 06’
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Traditional sensing versus compressive sensing

x Sample Compress Transmit /
Store

Receive Decompress x̂

Traditional

Compressive sensing

x Compressive sensing

(senses less, faster)

Transmit /
Store

Receive Reconstruction x̂

The two sensing approaches have their own advantages, address different
bottlenecks, fit different needs, and achieve different performance.
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Scheme of compressive sensing

• Signal sparse representation

• Linear encoding and measurement collection

• Nonlinear decoding (Sparse recovery)
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Sparse representation I

Sparse representation is the basis of CS.

• Express the information of a signal by a small number of real or complex
numbers. Mathematically, this is to express a signal uo as

uo =
p∑

i=1

ψixo
i ,

where all but a small number of entries xo
i are zero (or small enough to

safely neglect). Ψ = [ψ1 ψ2 · · · ψp] is called a dictionary.

• Besides using a dictionary, a signal can also become sparse under a certain
transform Υ, namely, Υ(u) is a sparse vector. Examples include the
gradient operator, curvelet transforms, etc.
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Sparse representation II
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Figure: Sparsity of image Cameraman (the DCT and wavelet coefficients are scaled for
better visibility). 11 / 67



Extensions to sparse models I
• Joint sparse signals. A set of signals u(i), i = 1, . . . ,L, of the same

dimension are jointly sparse if each of them is sparse and their non-zero
entries are colocated at (roughly) the same coordinates, or so under
dictionaries or transforms. Applications of the recovery of such signals ?
include multikernel machine learning, source localization, neuromagnetic
imaging, and many more.

Y Φ X

=

Figure: Joint sparse signal CS.
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Extensions to sparse models II

• Low-rank matrices. A matrix M ∈ Rm×n of rank r � min{m,n} has
mn entries but only r(m + n − r) degrees of freedom (consider the
singular value decomposition M = UΣV>; U, Σ, and V have∑r

i=1(m − i), r , and
∑r

i=1(n − i) degrees of freedom, respectively, which
sum to r(m + n − r)). Applications of low-rank matrix recovery include
model reduction, recovering shape and motion from image streams, the
Netflix recommendation problem, and more.

. . . . . .

M

≈

L RT

Figure: Approximation of a low-rank matrix.
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Extensions to sparse models III

• Unions of subspaces and model-based CS. The support of a k-sparse
vector is one of the

(n
k

)
possibilities, but for many signals in practice some

or even most of these possibilities are not possible. For example, some
transforms’ coefficients follow a certain tree structure, some signals’
non-zero entries tend to cluster, and some signals must lie in particular
linear subspaces. These signals are easier to recover, and their structures
can be generalized as the union of certain subspaces.
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CS encoding and decoding

• In CS, the signal u0 = Ψx0 is encoded to b = Au0. The recovery would
be straightforward if A has full column rank, in which case u0 would be
the unique solution of

minimize
u

‖b−Au‖22,

or u0 = (AT A)−1AT b.

• However, CS uses fewer samples and A has fewer rows than columns.
Such a matrix cannot have full column rank, and b = Au has multiple
solution.

• What kind of matrix A allows the recovery of u0 (or a good approximate
of u0) from b = Au given merely that x0 is sparse?
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Sensing matrix design

Two questions in CS

• How should we design the sensing matrix A to ensure that it preserves the
information in the signal u?

• How can we recover the original signal u0 from measurements b?

In the case where the data is sparse or compressible, we can design matrices
A with much fewer rows than columns that ensure that we are able to recover
the original signal accurately and efficiently.
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Coherence I
• In Rn or Cn , the coherence between the basis Φ, which has elements
φ1, . . . , φn , and the basis Ψ, which has columns ψ1, . . . , ψn , is

µ(Φ,Ψ) =
√

n max
1≤i,j≤n

|〈φi , ψj〉|
‖φi‖2‖ψj‖2

. (1)

• The quantity µ(Φ,Ψ) measures how small the closest angle between any
two elements of Φ and Ψ can be. 1 ≤ µ(Φ,Ψ) ≤

√
n.

• Assume Au gives just m out of the n coefficients of ΦT u. Then the
question becomes what relation between two orthogonal bases Φ and Ψ
allows the recovery of xo (and thus uo) from incomplete coefficients of
ΦT Ψxo.

• With low coherence, every element of Φ is “misaligned” with every element
of Ψ, so 〈φi , ψj〉s are roughly equal and stay uniformly away from zero.
Hence, each coefficient i of ΦT Ψxo, which equals

∑
1≤j≤n〈φi , ψj〉xo

j ,
encodes a guaranteed amount of information of each xo

j .
• In contrast, high coherence leads to uneven 〈φi , ψj〉, and at least for some

i, the coefficient i of ΦT Ψxo encodes just a few xo
j s while being nearly

useless for the others.
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Coherence II

Theorem (Candes-Romberg 06’)
For a given uo = Ψxo where xo has at most k non-zero entries, choose m
entries of ΦT uo uniformly at random, denoted as vector b = PΩΦT uo, where
PΩ is the selection operator. As long as

m ≥ C · µ2(Φ,Ψ) · (k log n) (2)

for some constant C > 0 independent of k and n, the solution to
min{‖x‖1 : b = PΩΦT Ψx} is xo with overwhelming probability. (The result is
shown for nearly all possible sign sequences of xo.)

• There are various results telling us when we can trust `1 minimization. We
will consider the simple model with Ψ = I.
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Null space conditions I

• Null space of A: N (A) = {z : Az = 0}.

• For any pair of distinct vectors x,x′ ∈ ΣK = {x : ‖x‖0 ≤ K}, we must
have Ax 6= Ax′. Otherwise, it would be impossible to distinguish x and
x′ based solely on the measurements b.

• If Ax = Ax′, then A(x− x′) = 0 with x− x′ ∈ Σ2K .

• The spark of a given matrix A is the smallest number of columns of A
that are linearly dependent.

• Theorem: 2 For any vector x ∈ Rm , there exists at most one signal
x ∈ ΣK such that b = Ax if and only if spark(A) > 2K .

2Donoho and Elad, 03’
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Null space conditions II

• The spark provides a complete characterization of when sparse recovery is
possible for dealing with exactly sparse vectors. However, in order to deal
with approximately sparse signals, we have to introduce somewhat more
restrictive conditions on the null space of A. We must also ensure that
N (A) does not contain any vectors that are too compressible in addition
to vectors that are sparse.

• A matrix A satisfies the null space property (NSP) of order K if there
exist a constant C > 0 such that

‖hΛ‖2 ≤ C ‖hΛc‖1√
K

holds for all h ∈ N (A) and for all Λ such that |Λ| ≤ K .

• The NSP quantifies the notion that vectors in the null space of A should
not be too concentrated on a small subset of indices. If a vector h is
exactly K−sparse, then there exist a Λ such that ‖hΛc‖1 = 0 and hence
hΛ = 0 as well. Thus if a matrix A satisfies the NSP then the only
K−sparse vector in N (A) is h = 0.
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Null space condition III

• Let 4 : Rm → Rn represent a specific recovery methods, we will focus on
the guarantees of the form

‖4(Ax)− x‖2 ≤ C σK (x)1√
K

(3)

for all x, we σK (x)p = min
x̂∈ΣK

‖x− x̂‖p.

• Let A : Rn → Rm denote a sensing matrix and 4 : Rm → Rn denote an
arbitrary recovery algorithm. If the pair (A,4) satisfies (3), then A
satisfies the NSP of order 2K .
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Restricted isometry property I

• The NSP is both necessary and sufficient for establishing recovery
guarantees of the form

‖4(Ax)− x‖2] ≤ C σK (x)1√
K

,

but these guarantees do not account for noise. When the measurements
are contaminated with noise or have been corrupted by some error such as
quantization, it will be useful to consider somewhat stronger conditions.

• A matrix A satisfies the restricted isometry property (RIP) of order K if
these exists a δK ∈ (0, 1) such that

(1− δK )‖u‖22 ≤ ‖Au‖22 ≤ (1 + δK )‖u‖22,

holds for all u ∈ ΣK .

• If a matrix A satisfies the RIP of order 2K , then we can say A
approximately preserves the distance between any pair of K−sparse
vectors.
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Restricted isometry property II

• Let A : Rn → Rm denote a sensing matrix and 4 : Rm → Rn be a
recovery algorithm. We say that the pair (A,4) is C-stable if for any
u ∈ ΣK and any e ∈ Rm we have that

‖4(Au + e)− u‖2 ≤ C‖e‖2.

• If the pair (A,4) is C-stable, then

1
C ‖x‖2 ≤ ‖Ax‖2 (4)

for all x ∈ Σ2K .

• If C → 1, we have that A must satisfy the lower bound of RIP condition
with δ2K = 1− 1

C2 → 0.
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RIP and NSP

• The RIP is strictly stronger than the NSP: If A satisfies the RIP of
order 2K with δ2K <

√
2− 1, then A satisfies the NSP of order 2K with

constant

C =
√

2δ2K

1− (1 +
√

2)δ2K
.
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Matrix that satisfy the RIP

• It is possible to deterministically construct matrices of size m × n that
satisfy the RIP of order K , but such constructions also require m to be
relativey large. 3

• Fortunately these limitations can be overcome by randomizing the matrix
construction.

• It is difficult to verify the conditions.

• We can still use CS even if the conditions are not satisfied: The conditions
are uniform condition, and sufficient condition.

3DeVore 07’, Ubdyk 08’
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Basis pursuit

minimize
x

{‖x‖1 : Ax = b}

xo

Ax =
b

x

z

y
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Basis pursuit denoising and LASSO

minimize
x

{‖Ax− b‖2 : ‖x‖1 ≤ τ}, (5a)

minimize
x

‖x‖1 + µ

2 ‖Ax− b‖22, (5b)

minimize
x

{‖x‖1 : ‖Ax− b‖2 ≤ σ}. (5c)

Questions:

1. Are they equivalent? in what sense?
• Solution can be non-unique. Why?
• A solution to one of them is also the solution to the other two with

appropriate parameters?
• Solution sets Xτ = Xµ = Xσ?

2. How to choose parameters?
• τ , µ, and σ have different meanings.
• Applications determine which one is easier to set.
• Use a test data set, then scale parameters for other data.
• Cross validation
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Sparse under basis Ψ

minimize
s

{‖s‖1 : AΨs = b} (6)

If Ψ is orthogonal, problem (6) is equivalent to

minimize
x

{‖Ψ∗x‖1 : Ax = b}. (7)

Also,

minimize
x

{‖Ax− b‖2 : ‖Ψ∗x‖1 ≤ τ},

minimize
x

‖Ψ∗x‖1 + µ

2 ‖Ax− b‖22,

minimize
x

{‖Ψ∗x‖1 : ‖Ax− b‖2 ≤ σ}.
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Sparse after transform L

minimize
x

{‖Lx‖1 : Ax = b} (8)

Examples of L:

• DCT, wavelets, curvelets, ridgelets, ....
• tight frames, Gabor, ...
• (weighted) total variation

See: E. J. Candès, Y. Eldar, D. Needell and P. Randall. Compressed sensing with coherent and

redundant dictionaries. Applied and Computational Harmonic Analysis 31(1), 59–73. (L-RIP ⇒
stable recovery of Lx)
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Figure: Sparsity of image Cameraman (the DCT and wavelet coefficients are scaled for
better visibility).
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Joint/group sparsity

Joint sparse recovery model:

minimize
X

{‖X‖2,1 : AX = b} (9)

where

‖X‖2,1 :=
m∑

i=1

‖[xi1 xi,2 · · · xin ]‖2 .

also ‖X‖p,1 for p > 1. Complex-valued signals are a special case.
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Joint/group sparsity

Decompose {1, . . . ,n} = G1 ∪ G2 ∪ · · · ∪ GS .

• Non-overlapping groups: Gi ∩ Gj = ∅, ∀i 6= j.

• Otherwise, groups may overlap (what kind of structure can be modeled?).

Group-sparse recovery model:

minimize
x

{‖x‖G,2,1 : Ax = b} (10)

where

‖x‖G,2,1 =
S∑

s=1

ws‖xGs‖2.
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Side constraints

• Nonnegativity: x ≥ 0

• Bound (box) constraints: l ≤ x ≤ u

• General inequalities: Qx ≤ q

They can be very effective in practice. They also generate “corners”.
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Prox-linear algorithm

Consider the general form

minimize
x

r(x) + f (x),

where r is the regularization function and f is the data fidelity function. The

prox-linear algorithm is:

xk+1 = arg min
x

r(x) + f (xk) + 〈∇f (xk),x− xk〉+ 1
2δk
‖x− xk‖22.

The last term keeps xk+1 close to xk , and the parameter δk determines the

step size. It is equivalent to

xk+1 = arg min
x

r(x) + 1
2δk

∥∥x−
(
xk − δk∇f (xk)

)∥∥2
2
.
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Shrinkage operation I

• The problem
min

x
‖x‖1 + 1

2τ ‖x− z‖22, (11)

where τ > 0, is equivalent to solving minxi |xi |+ 1
2τ |xi − zi |2 over each i.

And one can obtain the closed-form solution

(xopt)i =


zi − τ, zi > τ

0, −τ ≤ zi ≤ τ,

zi + τ, zi < −τ.

(12)
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Shrinkage operation II
• The solution is illustrated in the figure below.

xopt = shrink(z, τ). (13)

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

 

 

y = x
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y = shrink(x,1)

Figure: Illustration of shrink(x, τ).
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Basis pursuit denoising

Let r(x) = ‖x‖1 and f (x) be a differentiable function (e.g., µ
2 ‖Ax− b‖22).

The backward step is a shrinkage. Hence, it becomes

xk+1 = shrink(xk − δk∇f (xk), δ−1
k ).

The main computation at each iteration k is ∇f (xk) (e.g., µAT Axk). If we

generalize to r(x) = ‖Ψx‖1 for an orthogonal linear transform, then it is given
by

xk+1 = ΨT shrink(Ψ(xk − δk∇f (xk)), δ−1
k ).
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Example

min
x
‖x‖1 + 1

4(x1 + 2x2 − 3)2

Optimal solution: x∗ = [0, 1]. Let δk = 1/5, x0 = [0, 0]

Forward step Backward step
[0.3,0.6] [0.1,0.5]

[0.29,0.88] [0.09, 0.68]
[0.245,0.99] [0.045,0.79]

[0.1825,1.065] [0,0.865]
[0.127,1.119] [0,0.919]

[0.1162,1.1514] [0,0.9514]
[0.10972,1.17084] [0,0.97084]

...
...

41 / 67



x1

x2

0.5 1 1.5 2 2.5 3

0.5

1

1.5

42 / 67



Other variants

• Accelerated prox-linear algorithms: FISTA etc.

• High-order pros-linear algorithms.
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Dual (sub)gradient ascent

Primal problem
minimize

x
f (x), s.t. Ax = b.

The Lagrangian dual is a maximization problem

maximize
y

g(y)

If g is differentiable, you can apply

yk+1 ← yk + αk∇g(yk).

Derive ∇g by hand, or from the definition of Lagrangian L(x; y):

If we let x̄← minx L(x; yk), then

∇g(yk) = Ax̄− b.
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Dual (sub)gradient ascent

Iteration:

xk+1 ← arg min
x

L(x; yk),

yk+1 ← yk + αk(Axk+1 − b).

Works but need properties of ∇g and in turn properties of f (e.g., strict
convexity). Example: linearized Bregman.

Also, there are dual subgradient ascent methods.
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Augmented Lagrangian (a.k.a. Method of Multipliers)

Augment L(x; yk) = r(x)− (yk)T (Ax− b) by adding δ
2‖Ax− b‖22.

Iteration:

xk+1 = arg min
x

r(x)− (yk)T (Ax− b) + δ

2‖Ax− b‖22,

yk+1 = yk + δ(b−Axk+1).

from k = 0 and y0 = 0. δ > 0 can change in k.

The objective of the first step is convex in x (if r(·) is convex) and linear in y.
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Augmented Lagrangian (a.k.a. Method of Multipliers)

Recall KKT conditions

Compare with

Dual feasibility is maintained for (xk+1,yk+1)!

Also, it works toward primal feasibility:

−(yk)T (Ax− b) + δ

2‖Ax− b‖22 = δ

2 〈Ax− b,
k∑

i=1

(Axi − b) + (Ax− b)〉.

Keep adding penalty to the violation of Ax = b, achieving it in the limit (for
polyhedral r(·) in finitely many steps).
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Augmented Lagrangian (a.k.a. Method of Multipliers)

BTW, the iteration is equivalent to proximal dual ascent

yk+1 ← arg max
y

g(y)− 1
2δ ‖y− yk‖22.

Compared to dual gradient ascent

• Pros: converges for nonsmooth and extended-value f (thanks to the
proximal term)

• Cons:
• If f is nice and dual ascent works, it may be slower than dual ascent

(especially one with line search, 2nd-order ascent, e.g.)
• The term 1

2δ ‖Ax− b‖22 in the x-subproblem prevents splitting (unless A
has a block-diagonal structure)

49 / 67



Alternating direction method of multipliers (ADMM)

Start with separable formulation

min
x,y

f (x) + g(y)

s.t. Ax + By = b.

f and g are convex, maybe nonsmooth, can include constraints

Basic ADMM iteration

1. xk+1 ← min f (x) + g(yk) + β
2 ‖Ax + Byk − b− zk‖22,

2. yk+1 ← min f (xk+1) + g(y) + β
2 ‖Axk+1 + By− b− zk‖22,

3. zk+1 ← zk − (Axk+1 + Byk+1 − b).

Dates back to Douglas, Peaceman, and Rachford (50s–70s, operator splitting
for PDEs); Glowinsky et al.’80s, Gabay’83; Spingarn’85; Eckstein and
Bertsekes’92, He et al.’02 in variational inequality.

Lost favor for nonlinear programming around 1990–2004.
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Alternating direction method of multipliers (ADMM)

• Now, z is the scaled dual variable (i.e., z = βλ, where λ is the Lagrange
multipliers)

• At each iteration, apply Gauss-Seidel to update x and then y

• If x and y are minimized jointly, it reduces to the augmented Lagrangian
method

• Can be extended to multiple blocks (some questions remain open)

• Can be extended to Jacobian (parallel) updates of x and y (dampen the
update of z)

• Can be extended to inexact updates of x and y (dampen the update of z)

• If f and x are separable and A = I , x-update is decomposable
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Bregman Methods

Three different versions:

• (original) Bregman = Generalized proximal point = Residual addback =
augmented Lagrangian method

• linearized Bregman = smoothing and dual ascent

• split Bregman ≈ alternating direction of multipliers

Bregman iterations update (sub)gradients, instead of Lagrange multipliers
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Bregman distance

Definition: let r be a convex function

Dr(x,y; p) = r(x)− r(y)− 〈p,x− y〉, where p ∈ ∂r(y).

Not a distance but has its flavor.

Examples: D`2
2
(u, uk ; pk) versus D`1 (u, uk ; pk)

differentiable case non-differentiable case
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Bregman algorithm

Iteration

xk+1 = arg min
x

Dr(x,xk ; pk) + f (x), (14a)

pk+1 = pk −∇f (xk+1), (14b)

starting at k = 0 and (x0,p0) = (0,0). The update of p follows from

0 ∈ ∂r(xk+1)− pk +∇f (xk+1), (15)

so the Bregman distance Dr(x,xk+1; pk+1) is well defined.

Interestingly, Bregman iteration has three another interpretations

1. Proximal point iteration

2. Residual addback iteration

3. Augmented Lagrangian iteration
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Bregman iterations and denoising
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Linearized Bregman

We can consolidate Dr(x,xk ; pk) and 1
2α‖x− xk‖22 as follows:

Introduce
r̄(x) := r(x) + 1

2α‖x‖
2
2

and
Dr̄(x,xk ; p̄k) = Dr(x,xk ; pk) + 1

2α‖x− xk‖22.

We can rewrite the iteration as

xk+1 ← arg min
x

Dr̄(x,xk ; p̄k) + 〈∇f (xk),x〉,

p̄k+1 ← p̄k −∇f (xk).

Since r̄ is strongly convex, the iterations work without any proximal terms.
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Linearized Bregman and Dual Gradient Ascent
Consider f (x) = µ

2 ‖Ax− b‖22.

Linearized Bregman iteration:

xk+1 ← arg min
x

r̄(x)− (p̄k)T x + µ〈AT (Axk − b),x〉,

p̄k+1 ← p̄k − µAT (Axk − b).

Dual gradient ascent iteration:

xk+1 ← arg min
x

L(x; ȳk) = r̄(x)− (ȳk)T (Ax− b),

ȳk+1 ← ȳk + τ(Axk+1 − b).

The two iterations are equivalent under µ = τ and p̄k = −AT ȳk−1.

So, linearized Bregman is dual ascent applied to

minimize
x

r̄(x) = r(x) + 1
2α‖x‖

2
2

s.t. Ax = b.
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Exact Regularization / Smoothing Effect

• In general, the smoothing term 1
2α‖x‖2 changes the solution.

• However, if r(x) = ‖x‖1 (or any piecewise linear function) and if α is
sufficiently large, minimizing r(x) and r̄(x) are equivalent!

• Consequences of adding 1
2α‖x‖

2
2 to r(x)

• r̄(x) is strongly convex (so, faster convergence)
• the dual function is continuously differentiable (smoothed to C1)
• dual gradient ascent is applicable
• classical techniques for gradient decent such as Barzilai-Borwein steps, line

search, Nesterov’s method can speed up convergence

• Caution: dual is not C2, so 2nd-order methods such as Newton and
quasi-Newton are not safe!
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Split Bregman

Split Bregman = Bregman iteration + Splitting + Sequentially solving
subproblems for multiple iterations

Since

• Bregman iteration = augmented Lagrangian iteration

• ADMM = augmented Lagrangian iteration + Splitting + sequentially
solving subproblems for just one pass

So, Split Bregman ≈ ADMM.
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Orthogonal matching pursuit

• Orthogonal matching pursuit (OMP)4: With an initial point x0 and empty
initial support S0, starting at k = 1, it iterates

rk = b−Axk−1, (16a)

Sk = Sk−1 ∪ arg min
i
{‖φiα− rk‖2 : i 6∈ Sk−1, α ∈ R}, (16b)

xk = arg min
x
{‖Ax− b‖2 : supp(x) ⊆ Sk}, (16c)

until ‖rk‖2 ≤ ε is satisfied.

4Tropp 07’
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CoSaMP

• CoSaMP5: With an initial point x0 and an estimate sparsity level s,
starting at k = 1, CoSaMP iterates

rk ← b−Axk−1 (residual) (17a)

a← A∗rk (correlation) (17b)

T ← supp(xk−1) ∪ supp(a2s) (merge supports) (17c)

c← arg min
x
{‖Ax− b‖2 : supp(x) ⊆ T } (least-squares) (17d)

xk ← cs, (pruning) (17e)

until ‖rk‖2 ≤ ε is satisfied, where a2s = arg min
a
{‖x− a‖2 : ‖x‖0 ≤ 2s} is

the best 2s-approximate of a and similarly, cs is the best s-approximate of
c. Over the iterations, supp(xk) are updated but kept to contain no more
than s components. Hence, T has no more than 3s components.

5Needell-Tropp 08’
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Hard thresholding

• Iterative hard thresholding

c←
(
xk + AT (b−Axk)

)
, (18a)

xk+1 ← cs, (18b)

• Hard thresholding pursuit6

c←
(
xk + AT (b−Axk)

)
, (19a)

T ← supp(cs) (19b)

c← arg min
x
{‖Ax− b‖2 : supp(x) ⊆ T } (19c)

6Foucart 11’
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Homotopy algorithms

• For model,
min

x
µ‖x‖1 + 1

2‖Ax− b‖22. (20)

there is a method to compute its solutions corresponding to all values of
µ > 0 since, assuming the uniqueness of solution x∗ for each µ, the
solution path x∗(µ) is continuous and piece-wise linear in µ.

• Optimality condition:

µp(µ) + AT (Ax(µ)− b) = 0. (21)

d
dµ (µp(µ)) + AT A d

dµx(µ) = 0. (22)

For active set Λ (non-zero subset of x), we have

pΛ(µ) + AT
ΛAΛ

d
dµxΛ(µ) = 0. (23)

d
dµxΛ(µ) = (AT

ΛAΛ)−1pΛ(µ). (24)
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Non-convex approaches
• Non-convex optimization, includes ones based on minimizing the

non-convex `q quasi-norm

‖x‖q = (
∑

i

|xi |q)1/q, 0 < q < 1,

and its variants.

xo

(a) `1 Minimization

xo

(b) `1/2 Minimization

Figure: `1 vs. `1/2 minimization.
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Thank You!

References:

• “Compressive Sensing for Wireless Networks” by Z. Han, H. Li, and W.
Yin, Cambridge University Press, 2013

• http://www.caam.rice.edu/˜optimization/sparse/index.html
(Course at Rice University: Email me for the password)

• http://nuit-blanche.blogspot.com/

• http://dsp.rice.edu/cs
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