SCIENTIFIC IMAGES:
DEPICTIONS/DIAGRAMS/DATA

(what we see Is what we know)
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FIG. 4. Bode plots of mean gain and phase for regular afferents (), irregular afferents (a), all afferents (x), and
second-order neurons (e, from data of Refs. 15 and 23). For the second-order neurons, phase was derived from
32 neurons, gain from 26. Error bars show standard deviation for second-order neurons and for population of all
afferents. Sensitivity normalized at 0.175 Hz for afferents, 0.19 Hz for second-order neurons.
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FIG. 4. Bode plots of mean gain and phase for regular|afferents (0), irregular afferents (a), all afferents (x)

second-order neurons (e, from data of Refs. 15 and 23).

aﬁ‘erents (0), 1rregular afferents (A), all afferents (x),

,|]and
For the second-order neurons, phase was derived from

32 neurons, gain from 26. Error bars show standard deviation for second-order neurons and for population of all
afferents. Sensitivity normalized at 0.175 Hz for afferents, 0.19 Hz for second-order neurons.
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Figure 2. Camera lucida drawings of apical dendrites partially depicted
in Figure 1. The arrows indicate the same dendritic spines indicated in
Figure 1. Scale bar, 10 um for both 4 and B.

[
o

=
*

number of apical dendritic spines / 10 um

diestrus proestrus estrus

Figure 3. Number of dendritic spines per 10-pm dendrite obtained
from apical portion of CAl pyramidal cell dendritic tree. Values rep-
resent means + SEM. The asterisk denotes a significant difference from
proestrus (p < 0.01).

Woolley, et al., | Neurosci. 10:4035, 1990
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O What do images have in common!?



O elements of a general science of imaging
—| increasingly, images are data

— commonalities: quantization, resolution, dimension reduction,
feature detection, distortion, semiotics, analysis, perception,
noise, compression, presentation, repeated measures, sensitivity
uniformrty, motion and dynamics, etc...

—{ stakeholders: physics, chemistry, medical imaging, astrophysics,
nanoscience, mathematics, design medialarts, statistics. ..



WHAT IS AN IMAGE?

Edited by James Elkins and Maja Naef




O what is an image?

Images as a very skin of things.

Images as reminders.

Images as defective sign systems.
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images reflect our cognitive constructs of the world.
they reflect our brains and our evolutionary origins.
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Picasso “Donna che dorme”
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Shepard and Metzler, Science, 1971
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Cohen, Kosslyn, et al,, Brain, 1996




. Depictions

. Diagrams

Exports and lmports of SCOTLAND o and from different parts for one Year from C'hriftmae 1780 to Chriftraas 1761
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Images from Bronskill, M. J., E. R. McVeigh,
et al. 1988 Radiology 166(2): 485-8.
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MS Cohen and D Baird, Perspective on Science, 7(2): p. 231-254. 1999
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Three Old Women Beating a Devil on the Ground
Daniel Hopfer c. 1470
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Liu, Jin, Koh, Atanasov, Schein, Wu,Zhou. Science, 329(5995), 2010







digital Images
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IMAGE SPARSITY

Many Images Can Be Represented Sparsely In a Different
Representation or Basis (e.g., Wavelet or Fourier)

K«N large
wavelet
coefficients

N pixels |

Fourler

Kelly et al, Science vol.273, pg. 1371 (1996).




UESTION: Why Acquire All of
the Original Pixels When a
Fraction Will Do!?
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Sampling Requirements
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Graphic concept borrowed from M Lustig
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original damaged iImage  reconstructed
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An MBO Scheme on Graphs for Segmentation and Image Processing
Ekaterina Merkurjev, Tijana Kostic, Andrea Bertozzi
(submitted) SIAM J. Imag. Proc. 2012
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computer vision

pascal challenge 2012



computer vision

pascal challenge 2012



O Brain Reading / Brain Networks
O EEG and fMRI

O Data Sparsity

O Image Sparsity

O Brain Sparsity



FMR

explores intensity variations in MR signal

intensity variations reflect venous [O2]

K Kwong, et al.,“"Dynamic magnetic resonance
imaging of human brain activity during primary
5 sensory stimulation.” PNAS, 1992.
©2015 Mark Cohen, all rights reserved ——




Hemodynamic

05+
Response Model
0
MS Cohen, " “Parametric analysis of fMRI data
using linear systems methods.” Neurolmage, 0 50 100 150
1997.
|
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me ucLa Autocerebroscope

|\ MRI Scan
Control

Time Series of
Images

Subject
in Magnet

Functional
C Image
- Statistical

resonance imaging.” Methods. 2001, | Detection of

Signal Changes

MS Cohen, “Real-time functional magnetic

m |
'r Research supported under DA 13054 UCLA Brain
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MACHINE LEARNING IN FMRI
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| within-category correlations

Between=category correlations .
Al Excluding Haxby, et al., Science 293:2426, 200
object=selective maximally=responsive C — ———
cortex voxels
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CURSE OF DIMENSIONALITY
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BRAIN NETWORKS

Hand Motor Language

©2015 Mark Cohen, all rights reserved
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A MODEL of COGNITION

© Multiple Networks are Concurrently Active

© Current Cognitive State Reflects the Contributions of all
Currently Active Networks

© Many Such Networks are Common Across People
© Perhaps:

— Current Cognitive State is the sum™* of active network activity
Co=a; N, +a,N, +a;N; +...+a;N;.

Where:
CS I1s the current cognitive state
Nk Is one among many networks

Ok Is the “activity” level of the corresponding network
=P (S and & are functions of time

ohts reserved >kl’.near Or non'linear
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© Given an observed series of Xy, Identify (classify) CS

BRAIN READING

Co=aN;+a,N, +a;N+...+a; N,
CS=AN+o.

@ Sparsity issues:

How Many N's (features)?
What Are the Correct N's?
How Many CS's (cognitive states)?
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INDEPENDENT COMPONENTS
ANALYSIS (ICA)

Spatial ICA for fMRI
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spatially-independent

http://www.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdf
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Action_Execution
Action_Execution_Speech
Action_Inhibition

Cognition

Cognition_Attention
Cognition_Language Orthography
Cognition_Language_Phonology
Cognition_Language Semantics
Cognition_Language Speech
Cognition_Memory_Explicit
Cognition_Memory Working

Cognition_Reasoning
Cognition_Space

Emotion

Perception_Audition
Perception_Somesthesis
Perception_Somesthesis_Pain
Perception_Vision
Perception_Vision_Motion

Perception_Vision_Shape

The functional architecture of the human brain:
Correspondence between resting FMRI and task-activation studies

Stephen M. Smith! Peter T. Fox?
Karla L. Miller' David C. Glahn*? P.Mickle Fox? Clare E. Mackay'
Nicola Filippini' Kate E.Watkins! Roberto Toro*
Angela R. Laird? Christian F. Beckmann®!

©2015 Mark Cohen, all rights reserved



|C’s as CLASSIFIER DIMENSIONS
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CS= ) N,
Network 2

Network 3

Cognitive State Network |
Y Instance

65



DICTIONARY ELEMENTS

“Categorization and Generation of group-wide independent components in fMRI using

clustering.” A Anderson|, | Bramen, A Lenartowicz, P Douglas, C Culbertson, A
Brody, MS Cohen. OHBM 2010
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OPERATIONALIZED BELIEF

= Autobiographical

| own a toaster oven. (Disbelieve ) ( Believe )

= Ethical

It is good to help people in need. (Disbeiieve) ( Believe )

= Factual

Sugar Is sweet. ( Disbelieve ) ( Believe )

= Geographical

Nevada borders California. (bisbeiieve ) ( Believe )

= Mathematical

45/3) + 25 = 40. ( Disbelieve ) ( Believe )

= Religious
Jesus was actually born of a virgin. (Disbelieve ) ( Believe )
=  Semantic

“Gigantic” means “Huge.” (bpisbeiieve ) ( Believe )

S Harris, et al,, Annals of
Neurology, 63(2) 2008.

©2015 Mark Cohen, all rights reserved | c— —




CLASSIFYING BELIEF AND DISBELIEF

GLM Results Highest Ranked ICs
S Harris, et al., Annals of PK Douglas et al,, Neurolmage,
Neurology, 63(2) 2008. 56(2): p. 544-553.2011.

©2015 Mark Cohen, all rights reserved 68



BELIEF DETECTOR

Forward Subset Selection
19 Features, Classification 80%

_ Disbelief
" Belief

Disbelief

PK Douglas, et al,, Neurolmage, 56(2): p. 544-553.2011.

©2015 Mark Cohen, all rights reserved
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©2003 Randy Glasbergen

—GUSBERGE

“I have the results of your brain scan. We found all of your
computer passwords, evidence that you cheat on your taxes, and
the secret place where you hide candy from your wife and kids.”
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Anderson, et al,, Neuroimage 2015
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lconic Images
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SamplesNeeded / Pixels

1/10

1/100

1/1000

s the world sparse!

..... '—f‘P

Pixels

Donoho, D. [EEE Trans. Information
Theory, 2009, 52:1289, 2006




O elements of a general science of imaging
—| increasingly, images are data

— commonalities: quantization, resolution, dimension reduction,
feature detection, distortion, semiotics, analysis, perception,
noise, compression, presentation, repeated measures, sensitivity
uniformity, etc...

—{ stakeholders: physics, chemistry, medical imaging, astrophysics,
nanoscience, mathematics, design medialarts, statistics. ..



O what does a unified theory/approach mean?
O why is this important?

QO is it possible?



