Human Electropnysiology |

Crinciples of Neuroimaging




Ristory

Galvanometer
(pointer moves
with detection of
current in coll,
within magnetic
field)

x |875 - Richard Caton measures electrical

potential from exposed cortex of rabbits
(galvanometer used to record electrical impulses, replicated by Adolf
Beck in 1891)

x |9]2 - Pravdich-Neminski (photographic record of
electrical activity in dog brain using galvanometer; electrocerebrogram)

x [929 - Hans Berger (Libpman capillary electrometer;
Edelman galvanometer; Electroencephalogram; methodologically weak,
but observant of links between electrical impulses & “psychic
phenomena’’; psychiatrist)

x |950s - William Grey VValter (improved range/speed of AT deE T o
Berger’s machine; develops topographic methods - spiral-scan CRTs ’ €
attached to electrode pairs, arranged in geometrical array)

x [942/47 - UK/US EEG Societies formed

Voltage



‘ Pyramidal cells
@ Interneurons

Brain cortex is dominated by neuronal cells called Pyramidal cells. These are the primary
source of EEG signals, we think.



What is EEG?

1ms 10 ms

Action potential Postsynaptic potential

- communication involves synapses and action potentials

Inside Cell;

- post-synaptic potentials (PSPs, dendridic,100 ms)

- PSPs cause Na+ influx at dendrites

- action potentials (presynaptic, axonal & brief, <10 ms);
this'is the primary current

Outside Cell;

Result is a “sink” at dendrites (negative extracellular
space) & “source” near body (positive extracellular
space). Secondary current.



What is EEG?

CORTEX

WHITE MATTES

A dipole (flow of current from sink to source) is created with the electrical negativity towards
cortex surface in extracellular space.



What is EEG!?

EEG measures spatially summed potentials -
across neurons.

10%/mm?

Stimulated

~TIagRon. EEG measures spatially summed potentials -
different cortical populations.

Spatial Distribution: Direction of dipole determines
.,‘ spatial distribution of potentials. Mixture it multiple
Equivalent  J- dipoles (sum across spatial locations). Blurred.

Current

Cortex

Dipole

Amplitude: Size of population, organization &
depth determine strength.

.

What kind of obstacles might we encounter using EEG for sulcus activations?
How about thalamus??



More on dipoles...

Electro-cortical activity measured by EEG/MEG

Tangential Radial
dipole dipole

Sylvain Baillet

* no obstruction from skull

* Spatial resolution <1cmm

* better for source localization
* reference free

—— * more expensive

QP



How do we measure EEG!?

Amplification
Gain x10, x50

Signal Digitized

Reference Scalp

Periosteum

Skull
bone

Ground

Dura
mater \
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Stray noise = S o
diverted to earth A

Subarachnoid
space

Brain
Ref and active measured relative to a common electrode,

ISolated from ground. Layers covering the Brain



Spatial Sampling

35-electrodes 64 slectrodes

Cz Vertex
J

10%
\J
Nasion

10/20 System for
Electrode Placement
Odd on Left, Even on Right
5GP 1,0 designations
%distance to landmarks




Temporal sampling

N SN NN S
\v/ \v/ \v/ \\,/ Amplitude (DC) Drift

Electrode Polarization = build up of charge

A/DC (Resolution) at-each electrode due to reaction with
samples / sec (Hz) electrolyte = DC drift (“battery effect”)
commonly 10001z, 250z

choice subject to Nyquist theorem e.g.,>.01Hz

sampling range = 12 bits ‘DC amplifiers” will typically be coupled with sintered Ag/

, , AQgCl electrodes.
(212 = 4096 voltage values, impacts gain)



Different systems...

Subarachnoid
space

Brain

Layers covering the Brain

High-lmpedance: e.g.,
HydroGel Nets (EGI) have a
sponge’attached to each
electrode: The'sponge is
soaked in-saline solution {no
electrolyte gel required). High-
iInputimpedance on amplifier,
slows current and minimizes
voltage ‘drop at electrode. Dry
electrodes are an example of
such a:systems.

+Vve - faster-application for
dense array nets.

~ve - the connection IS not as
stable as with gel application.

Low-Impedance: Use Ag/AgCI (Sintered) Electrodes. Electrolyte
gel used to bridge electrode & scalp. Typically scrape the skin

to remove dead skin cells (high-impedance).
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Quick note on references.

F3

Larry Greischar’s Example



Quick note on references.

F3

IS this a problem?

Larry Greischar’s Example



YES!

* will clearly change distribution of positive/negative values in topography.
* must use “quiet” electrode (nose, earlobes etc)

NO!

* will not change isocontours of topography

we can always re-reference (can use ANY electrode/sensor to re-reference)

Nno evidence that scalp sensors better/worse than non-scalp reference like mastoid,
nose tip etc.

average reference is common solution but relies on pretty strong assumption (makes
no sense if sampling of head sphere is low)

*

*

1. Average Reference assumption

Fpz+ Fpl + AF3+FS+FTS+ . + TP10=0

2. First recalculate the activity at reference TP10

Sum of all electrode activity =

Fpz+ Fpl + AFS+ F2+ . -64TP10

TP1C = - (Sum of all electrode activity )85

3. Add up the activity of TP1C to all channels



* reference will affect topography (here N1)

* however temporally, the “event” of interest
IS unaffected and the isopotential lines of
topographic distribution is constant

Dien 1998




* reference will affect topography (here N1)

* however temporally, the “event” of interest
IS unaffected and the isopotential lines of
topographic distribution is constant

(1) to not rely on topography polarity and/or
amplitudes to make interpretation but, rather,
to examine temporal effects across the
spatial “pattern” (multivariate) or unmix the
signals, and, (2) use condition differences or
parametric variability to interpret amplitude
changes

Left Mastoid Reference Fz Reference POz Reference Average Reference

UIilillll<




Referencing...

A = 9-C C = can be “quiet” or “active’
S = D-C

==

electrode re-reference average reference

A-B=(@C)-(bC=ab AB . +7=0
C-B = (¢-¢)-(b-C) = ¢c-D C =-sum(A..2) / #e-1

a=A+C
b=B+cC

*assuming all electrodes referenced to the same ref (special case with bi-polar recording)
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Non-pbrain contributions

Electrodes pick up artefactual sources of electrical activity as well-as neural sources.

PHYSIOLOGICAL: Muscle,
Eyes, Tongue, Skin, ECG W,ﬁ“g, ! *“"“‘“’“"‘*‘“%‘M
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PHYSIOLOGICAL: Muscle,
Eyes, Tongue, Skin, ECG
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removal, template matching, ICA



PHYSIOLOGICAL: Muscle,
Eyes, Tongue, Skin, ECG

- ,'.s,\‘\’.,\. A .4,-_»/,,~-.‘, o

filter > 1Hz

removal, template matching, ICA




Environmental: 60/50Hz,
electrode popping/slipping
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filter notch at narrow freq or <40Hz

ICA, interpolation




Environmental: 60/50Hz,
electrode popping/slipping
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Preprocessing Decision Chart

No correct set of steps - must be chosen based on needs of your analysis.

High Pass Filter (>0.1/1Hz) Low Pass Filter (<40/50Hz) Interpolate Bad Electrodes

DC Recording: NO Study high-gamma: NO Sparse Array: NO
Not DC Recording: YES ERPs or low freq: YES Dense Array/Source

Imaging: YES

BDYaYaala\V/~ 1l Ni Y
1eMmove muscie, Nign req

L

“emaove arltt artiracts

vlaintains tull montage

AIQCTIICE V)SE NAC 10[2]
cIeClrical NoIse, eleClroae

JUNMO.

Ocular Artifact Correction Exclude bits of data
Segmenting: YES
Continuous: MAYBE

Allenuates INoIse variance

Atlenuates NoIse variance



Fyve artifacts & ICA fun

1. Template based removal. Record from below/above eye and use the signals in these
electrodes to ‘regress out’ similar activity in scalpieads (Gratton, Coles & Donchin, 1983).

2. Isolate eye related artefacts by blind-source separation methods (ICA).

Activity power spectrum

extended Infomax

(Lee, Girolami,
] g Sejnowski, 1999)
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Eye artifacts & ICA fun

T o My ¥ Which'is pre-IC removal?
Which is post-IC removal?

- ,:ff\r'\'Q-\v AN
e

It works quite well (Hoffman &
Falkenstein, 2008

Caveats
it helps to do a little bit of pre-
o e NSNS S ), I A cleaning (remove drift and bad
e G et S electrodes, bad segments

Infomax not so good with
muscle - amica does work well
with muscle (but experimental

ultimately seeks temporal

B Independence (stationarity
S e s assumption

N AN A PN NN NN




Other artifacts & ICA fun




Other artifacts & ICA fun
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How can we use EEG data to learn something

about brain function?

11MINg Of INeurocognitive FroCeSSES
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= |nitial EEG experiments examined unique events and
spectral content across entire recording and electrode set

qEEG (quantitative EEG)
clinical term to indicate quantitative
(typically spectral) description of data in
contrast to qualitative description

® fOCUS IS on neural event of functional significance, not on
neural mechanisms (recall Hans Berger)



= epilepsy
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Srain ota

A
g :

Drowsy —~8to 12Hz~alphawaves
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= cpilepsy
= Sleep

= psychiatry

14 year-pld. male, ADHD, 1nattentive JTypei-Listenng,.

e.g., theta (3-7Hz)/beta (12-30Hz) ratio increases interpreted
as “less active” brain states being dominant



These are robust measures - visible to the naked eye, require relatively little
data, easy to compute (QEEG). Non-gEEG requires training.

They are non-specific correlates of gross changes in brain state as they tell us
nothing albout underlying brain sources. This can be a problem for obtaining
specificity in attempting to use these measures as diagnostics (types of
epileptic event, psychiatric diagnosis).

Note: This is not to say that one couldn’t figure out sources of these gross changes, though
it’s surprising how little of that we have achieved.






-

0000000000000 00000000
1900090000099 99000099994
00000000000 0000000000
0000000000000 ROO0000D

0000000000000 COCO0000000

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Yy Yy

aa N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y'Y o P
Y Y Y X XYY Y Y Y Y Y Y Y ) S~y

00 00000

o0 ' :,../.JJ ~

20 6 -y Jl; Y ! Py -
) N)Y.W...P..IVJ)) Ty
L : uﬂd)))
SR P A

YWJ ;\..er l\/.‘/ o

oy VY <

Y YY)

¥
Y |~.JIJ.,1J../. Y

.....

: N -
pay oy oy N P ’ " v : v Y :
~ 2 T \ A Y N . \ - v o
N T Tat o Y Y v NNy ™y ™y
J 4 . )’
¥ \ oy Y ", ‘e . y
-~y - s ) e 5 3
5 I
™ Y oy

Y Y YyYyyys
0000000

A

®

©
0

2000
) o Y YXEXY) )Jﬂ

, © Y'Y NN 5 ce
J).).v/‘.\ ‘,.f.., : /)»..J)))J/ Ny }wl o
pmwﬂf, __,,;JJJJ)J)J)JJJ)J
.., .f

N N - - - - \ -
N B T i " s PNYNYYYYY Y YS

5 2B wﬁJJ

NN NN -y PAPNPAPAPNINFS

b .4 oeo0oQCO
YWY Y Y Y Y Y Y Y YV Yy Y Y R Y Y Y )
Y Y Y YYEY XY o &}h}._)v)\})w/
NERERLXBXYYNUE
N Y YTV e A K X
1 0B R0 0660000000000 9
Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
NP P g ey g S T P Py o ~ \ , .
e e N

\ 0 2 2 L Lt
00000 00000004

‘ ) B i o g i i i A
1) 2onooce:

N N 9 R A AR eDEER D

VY Y Y Y NN Ay )...J..,. 3

JJ..J.)I;.(/JA)JPI,'JVJJ). YYY Y Y Y Y y .
10900089000 00¢00000000009909000000006060099
N P SR R PR PR PP P P F iy g i . N\ Nyt oy o, S B
R R A A Py - \ . \
\ VYN VY VY Y Y YV

) v} 3
19000000000 0000000000000000080
PO BRDOOOE 00ROV 00000HODDDD
vy VY Y Y Y Y Y Y Y Y Y Y Y Y Y

\ NN Y Y Y Y S Y YYYYYYY
N S e A A A R OO0 00 EE DS DS y
NN NN NN YN YN Y Y Y Y Y Y Y Y Y
P e S S e S P B S S s o o e e




Q. At what time in the neural processing cascade do effects of attention
Impact visual processing?

Thalamus (LGN) serves strategic role in
gating ofiinformation flow to cortex

Light falls onto Optic tract
the photoreceptors
of the retina

radiations A
Nature Reviews | Neu

Gilbert & Li, 2013



Q. At what time in the neural processing cascade do effects of attention
Impact visual processing?
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EEG: Event Related Potential

Define “event” - identify onset-
locked responses for a window of
Interest. Average across events to
produce a stereotypical waveform
describing the timing of key
processes following that event.

Segments

Av\%age'd ERP Assume that we minimize “noise”
avetorm through averaging.

Typically pre-stimulus interval is
subtracted to provide reference.

-- ERP = event-related potential
-- sign is not meaningful

-- P = positive, N = negative

-- XX = latency indicator




Extracting timing...

Luck (review), TICS 2007

Onset of
attention

effect
|

-1 uV-—r |\
!  \

-100

+1 uV-—+
/

/
Attend
left

scale = <10 uV

trends in Cognitive Sciences

rinse and repeat at each
electrode to plot the scalp
topography of the effect

A. Within the first 100 ms of stimulus effects apparent in sensory cortex.
In anticipatory paradigms will see this pre-stimulus. Not clear if effects
present in thalamus. Can occur at different levels of processing
depending on level of “competition”.



EEG: Event Related Potential

we can now come up with a buffet of ERP delights to understand
the relative timing of different types of neuro-cognitive events



Steve Hillyard’s 6 families of cognitive ERPs:

nais

Single Flanker

P1, N1, N2(faces), Mismatch | S et 0
Negativity (N2), N2Pc

S
1
Q
o
T

©

>

Inferred processes:

* automatic stimulus responses
* early attentional selection

* Sensory memory - S e Ty o o Mo o

Time (ms)

> < > > < >>
Single Flanker Dual Flanker: Dual Flanker:
Set Size 4 Set Size 7

Time (ms)

Perceptual response 1S present
within 100 ms of stimulus -onset,
and IS reduced in presence or
visual distractors. Competition

thus occurs at this level (visual Pratt et al (2011) Frontiers
cortex).




Steve Hillyard’s 6 families of cognitive ERPs:

B LS e
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BB B4

Inat

2. Discrim

i ""
J 75
‘ J
- | < o Bt N J

N2, P2, selection negativity, P3’s

iINnferred processes:
* late attentional selection (updating)
2 Orienting tO nOvelty (VS fam i |iar) “Push the Batton ax fast ax you can wivenever yoo see the large ellipge!™

2 o5
pattern recognition s s T s s 8 D s s

15s | ]
‘comparison of signals to internal model” ...\ o900 o0 - ¢ 0

s\r'gand.vd (!50"-*.) t: target {10 %) o/d'immc'.or {90 %)

P1 is unaffected by detection instructions, but
P3 is affected, suggesting that this is the time at
which visual signals are compared against
internal template.




Steve Hillyard’s 6 families of cognitive ERPs:

2. D|scr|m|nat|on/Recognijt
150-500ms

iInferred
* late at
* orient
* patter

“Push the Batton ax fast ax you can wivensever yoo see the large ellipge!™

S S T S S S D S S

1 15 ] ]
coo0ooofo o
s gtandard lb&}) t: target {10 %) d",d;:'."oc'.oc(w %)

% 7

N

\ \‘"'3"

- - — = Standard
ncomp ------- Non-target

f-‘

Template comparison involves different processes for task-related and task-unrelated, but
salient, inputs. The latter IS a faster process (capacity to interrupt?).



Steve Hillyard’s 6 families of cognitive ERPs:

2 D|scr|mmahon/RecogmUohi

5

150-500ms &

N2, P2, selection negativity, P3’s

INnferred processes:

* late attentional selection (updating)
* orienting to novelty (vs familiar)

* pattern recognition

‘comparison of signals to internal moael”

Template comparison tie-ups ‘“resources’” that
translate a visual input (P1, N1) into a label.

T2 accuracy (% correct)

—
0O
C—

=
Q
°
=
a
G
-
5
O
-
o
O

 Attentidnal BLINK

1 2 3 4 §5§ 6
T1-T2lag

Luck (review), TICS 2007



Steve Hillyard’s 6 families of cognitive ERPs:

3. Memory Related (2-600 ms) | Late positivities, negativities.

N400, Syntactic positive shift, lexical
processing negativity, left anterior
negativity.

4. Language Related '

semantic N400-effect world knowledge N400-effect
(300 - 550 ms) {300 - 580 ms)

Like template comparison
(visual P3-like potentials),
syntactic/content matching
has-alatency of >200 ms.
Slower than visual.

L 2
”~
~

>
3
:
[+
A

-3 WV oQuv 3w

correct: The Dutch trains are yellow and very crowded.
world knowledge violation: The Dutch trains are white and very crowded.
semantic violation: The Dutch trains are sour and very crowded.

Hagoort et al (2004) Science



Steve Hillyard’s 6 families of cognitive ERPs:

5 Readiness Potentials Lateralized Readiness Potential (LRP) [c3-c4]

Bereitschaftspotential (BP) {c3 or ¢4]
Cognitive Negative Variation (CNV) [frontal midline]

FELET YRR (R At DR DL S LS RN DL GR4Y Ll Bl Bkl [ ks Kot Ik

— 5NN Ly
oUU oL

Time Ims]

Motor cortex™* (hand/eye) activates
Sttt Ao gl dsranm b o o Swcodrwore: to anticipate movement based on

indicate precue and response signal, respectively. FP = full-information precue; DP = direction

precue; HP = hand precue; NP = no-information precue. S,Oa t/a/ /(/’) OW/ edge
Leuthold et al., (1996) JEP. General



Microvoks (uV)
W N - O - N

i A

| I I -
0 500 1000 1500 2000 2500 3000 3500 4000 4500
mSec

—

Microvoits (kV)
G b WOWN =0 =20 & A

S00 1000 1500 2000 2500 3000 3500 4000 4500

mSec

Fig. 3. Grand average ERP activity collapsed across type of
task (cognitive and motor) at Fpl and C3 electrode sites. This
figure clearly illustrates the difference in ERP topography
across these two general types of tasks.

d Readiness Potential (LRP)
afseantial (BP)

Leynes et al., (1998) International
Journa/ of Psychophys

.
\‘f
)

Y/ -cual to | RP/BP
e — . \/Jotor Cortex

CNV == Something else - may or
may not result in movement




Steve Hillyard’s 6 families of cognitive ERPs:

- ——=—Correct
response

Error
response

Response
onset

A'cortical response IS present immeaiately following erroneous responses - what
does this tell us? (INe regardless of awareness, Pe with awareness)



Steve Luck’s (alum of Hillyard) caveats

component = “source/process”

' JJJJ
.: 3
)JJJ

range across | ridi’vﬁlu’afé %?%éé"?ﬁ'

/ 3 different trials Average of the
3 trials

/U

ERPs tell us something about stages of processing, assuming some unaerlying neuro-
cognitive module. They may or may not inform neuronal dynamics. We are recording
mixtures of signals.
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Sources

Two EEG channels

=\ ‘?3‘;1‘?’"'-
WA 2\ Sedondary
Currents

CNAS UPRS40 - USC - LANL




Approaches

|. Statistical separation of signal into components.
2. Modeling of cortical generators of EEG.



Statistical Separation of EEG into Components

Independent Component Analysis
Mostly Makeig/EEGLAB Camp

t

e X

X=As

X=data (electrodes x time)

A=mixing matrix (electrodes x K)

s =statistically independent components (X * time)

Second PCand  First PC
ThidIC /-

‘Second IC

PCA projection

(a)



Statistical Separation of EEG into Components

Independent Component Analysis
Mostly Makeig/EEGLAB Camp

AMICA

X
©
=
NS,
=
o
>
i

FastiCA

Independent EEG Sources Are Dipolar
Arnaud Delorme , Jason Palmer, Julie Onton, Robert OQostenveld, Scott Makeig
Published: February 15, 2012http.//dx.doi.org/10.1371/journal.pone.0030135



Modeling cortical generators of EEG:

® inverse problem (map scalp to cortex)

x forward problem (map cortex to scalp)

Inverse problem

forward problem



Algorithm:

® inverse problem (map scalp to cortex)

x forward problem (map cortex to scalp)

iInverse problem

take a guess at cortical source(s)
project to surface via forward solution

check accuracy (least-squares)
revise initial guess

AW —

forward problem



Forward
model

data forward
operator

tissue properties

ims

source noise
parameters

location (x,V,2)
direction
amplitude
current density vector

Jérémie Mattout, Christophe Phillips




Forward
model

data

Y- f

forward
operator

source noise
parameters

Equivalent Current Dipole (1-5
dipoles, estimate location and
orientation and amplitude)
Distributed Models (many dipoles,
fixed location, estimate orientation,
amplitude)

Jérémie Mattout, Christophe Phillips




CM Michel MM Murray / Neuroimage &1 (20)2) 371-385

A. From low-density to high-density montages

- T

.

forward
operator

A
A e

C.rrom equivalent current dipole to distributed source models




Forward operator = "Lead Field Matrix” = electromagnetic
(permeabillity and conductivity) and geometric propetrties
of tissue between source and scalp.

0000

sphere, homogenous spheroid, 3-
layer (scalp, skull, brain), 4-layer
(scalp, skull,-CSF, brain)

unigue estimates:of fissue-conduction

BEM (boundary element model)
surface triangulationotinterfaces-between compartments of equal
ISOtropic . conaductivities toprovide more accurate model

FEM (fine element model)

volume tesselation, handles anisotropic (directionally dependent) conductivities
within -each element

use MRI to constrain surfaces



Inverse
problem

UJ) =Y —KJI|" + o [WJ|]

AN

J = argmin|U (J)|
J

K = gains (lead field matrix)
J = current density vector
Y = scalp data
W/alpha = regularization parameters

Jérémie Mattout, Christophe Phillips




Inverse
problem

UJ) =Y —KJI|" + o [WJ|]

AN

J = argmin|U(J)]
J

W =1 : minimum norm min(overall intensity) favors weak/superficial sources

W = A : maximum smoothness (LORETA) favors smooth sources

other methods exist

Jérémie Mattout, Christophe Phillips




WMNE (constrained kernel, full, and unconstrained)

dSPI\/I sLORt

solution space needs to
consider space of plausible
sources

http://neuroimage.usc.edu/brainstorm/Tutorials/TutSourceEstimation



http://neuroimage.usc.edu/brainstorm/Tutorials/TutSourceEstimation

C.M. Michel et al. / Clinical Neurophysiology 115 (2004) 2195-2222

Original montage Down-sampled montages restricted Down-sampled montage
to the posterior scalp evenly distributed

46 electrodes 37 electrodes 28 electrodes 19 electrodes 19 electrodes

source localization is impacted by
spatial sampling



C.M. Michel et al. / Clinical Neurophysiology 115 (2004) 2195-2222

Original montage Down-sampled montages restricted Down-sampled montage
to the posterior scalp evenly distributed

46 e'ectrodes 27T alanteondas N0 alantendas 108 alantendas 108 alantendas
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Example: Interical Epileptiform Discharges

Vulliemoz et al., 2009, Epilepsia




Example: P3a versus P3b

Bottom

Distractor

Bledowski et al., 2004, J Neurosci




Example: P3 source localizations (LORETA)

AGE-MATCHED OLDER
CONTROLS CONTROLS
N=43

- . m—

Andreou et al., 2013 J Neuro

] Current density

MAX (HA/mm?)

Anderer 2003, Neurobiology of Aging



Cue Onset

300 ms 600 ms
Cue Onset Target Onset




Source localization gives EEG access to connectivity

e the holy grail of neural study is to model brain circuits
® cffective connectivity requires temporal resolution (M/EEG only)
® source localization provides necessary spatial resolution

structural connectivity functional connectivity effective connectivity

T’ —
A~

_-_'_'__-—'_'-*

A N4

lII'lll

m

LNV TINNTY

tracers, dissection association measures ablation, disruption, modeling



—ffective/Causal Connectivity in EEG

Garrido et al, PNAS 2007

A B

with backward connections and without

~ Forward
Backward

forward connections contribute to evoked potential and late potentials (auditory MMN),
whereas backward connections contribute to late potentials
dynamic causal modeling



Small list of methods

Functional Connectivity

e.q., correlation, coherence, phase locking value,
ANCEonNA comer ity imaginary part of coherency, phase lag index, pairwise
phase consistency, mutual information

cov(X,Y)
cor(X,Y) =

sd(X)sd(Y)

Effective Connectivity

e.q., dynamic causal modeling, granger causality (also
partial directed coherence, direct transfer function),
transfer entropy, phase slope index

effective connectivity

if previous state of x improves prediction of current activity in y, more than the previous
State of y, we say that x is Granger causal of y

7
X y




Human electropnysiology |l

Crinciples of Neuroimaging
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common reference problem

C Unipolar recordings
with separate reference

A Unipolar recordings Bipolar recordings

uni r3 unipolar 4
pols - data 2

S-S,
‘®

data 1 =source 1-R bipolar 1 = unipolar 1- unipolar 2 data 1 = source 1- R1

data 2 =source 2-R = (source 1-R) - (source 2-R) data 2 =source 2 - R2
= source 1-source 2

- ==

Coherence
Coherence

Frequency (Hz) Frequency (Hz) Freduen(',' (Hz)

GURE 5 | lllustration of different referencing schemes and how each effects the calculation of coherence with and without true neuronal coupling.
The case of unipolar recordings, which introduce spurious coherence values in the absence of coherence. (B) The bipolar derivation technique, which largely
solves the common reference problem. (C) The separate reference scheme, which also is not sensitive to common reference problems.




® volume conduction problem

- field spread results in mixing of signals which can inflate appareht
functional connectivity

- some “fixes” exist (below) but these are not complete”

*Schoffelen, J.-M., and Gross, J. (2009). Source connectivity analysis with MEG and EEG.
Hum. Brain Mapp. 30, 1857-1865. doi: 10.1002/hbm.20745

- unmix signals (source
analysis, |ICA)*

- use experimental contrasts™

- Use measures that ignore
zero-phase relationships '
(€.9., imaginary part of
coherency, phase lag index,

; 7 signal 1 =x: +iyi=Aie signal 1 * conj(signal 2) =
phaSG S|Ope IﬂdeX) signal 2 = x2 + iy2=Aze (1 +iy1) * (X2 = iy2) = (Xixa+yry2) + i(y1xe-yax1) =

A" * Ae = AiAze




volume conduction problem

A coherence imagicoh) c coherence diff
10
40
30

ZL

coherence mag(coh) diff

P ™

coherence diff

If',’f’?‘{

coherence diff maglcoh) diff




® signal to noise problem

A Auto-regressive model

Xy(0) = 05x,(¢ = 1)=08x,(t ~2)+02x,(¢ =~ 1)-0.1x,(r -~ 2)+¢,

x(t) = 05x,(t = 1)-08Bxy(t —2)+02x,(t = 1)-01x,(t — 2) + ¢,

Case 1: no noise Case 2: extra noise

=G O=0G
—_— noise=7 —

C

Power - case 1

freqixen(y (H;:)

Power - case 2

Coherence - both cases

freqvuency (H2)

Granger causality - case 2

freqbency (Hz)

freciuency (Hz)

D

Granger causality - case 1

freduency (Hz)

Time-reversed Granger causality - case 2

freduen(y (Qz)

FIGURE 7 | A simulation of the signal to noise ratio problem. (A) Two nodes interact bidirectionally with equal connectivity strengths in the two directions, and
the data is observed without (case 1) or with (case 2) measurement noise. (B) Power for case 1, (C) Coherence for case 1 and 2, and (D) Granger causality estimates
for case 1. (E) Power, (F) Granger causality estimates for case 2. (G) Granger causality estimates after time-reversing the data produced by case 2.

* mitigate by keeping noise constant across sources (e.g., impedances), using time

reversed model, DCM




® common input problem (also “al

A Case 1-time-lagged common input
(all nodes observed)

=

1&2

Generative model

Xy (t) 05x, (¢ 1)-08x,(t 2)+ 0 2x,(t 1)-0.1x,(t

X3(t) = 05x,(t = 1)-08x,(¢ —2)+02xy(¢ — 1) -0.1xy(e -

xy(t) 05x,(t 1)«08x,(t ~2)e5,

D Case 2 - time-lagged common input
(only nodes 1 and 2 observed)

O
=

t=2

Generative model

(1) 05x, (¢t 1)=08x,(t —2)+02x,(r 1) #¢,
X;(t) 05x,(¢ 1)=08x,(t = 2) ~0.1xy(t ~2)*¢;
o) = 05x,(t = 1)=08x,(t ~2)+¢,

G Case 3 - time-lagged common input
(all nodes are observed)

Generative model

X (8) =05, (¢ = 1)=08Bx;,(t —2)+02x5(t — 1) » ¢,
x;(t) D5x,(t 1)=08x,(¢ = 2) =0.1x,(t = 2) + ¢,
xy(t) = 05x4(t = 1)=08x,(t - 2)+ ¢,

|” -

Coherence - case 1

inpu

FAR B

2)+¢,

t problem)

Granger causality - case 1

freqhdency (H"A'z)

Coherence - case 2

A

[N

frehduency (H2)

Granger causality - case 2

OVNAA

frequency (Hz)

Coherence - case 3

frequency (Hz)

Granger causality - case 3

freqﬁency (H2)

* problem for DCM too (all directed models)

[

freduency (H2)




sample size problem

Coherence as a function of trial number Granger causality as a function of trial number

Number of tnals ey of trials

FIGURE 10 | Sample size bias for coherence and Granger causality estimates. (A-C) For each respective metric, simulations based on 5, 10, 50, 100, and
500 trials were run, and coherence (A), Granger causality (B), and PPC (C) were calculated. Each panel reflects the average + 1 standard deviation across 100

realizations.

* not unique to these measures - true for- most measures of association (functional
connectivity), with exception of pairwise phase consistency (developed to mitigate
sample size bias - looks at distribution across trials clustering around value)



Problems with connectivity measures in EEG

- estimating connectivity is not trivial
- no magic bullet

- good practice considerations
- use reference condition (eliminate spurious effects due to common
reference)
- keep noise constant across sources
- keep trials constant across sources
- must consider measures immune to volume conduction
- and/or unmix sources
- assume model is wrong



Oscillations in EEG Signals

Berger 1924

souV[kW”W Wil Wﬁ w W ,w.m';l\wm

g:::.'t"fwwm

5Hz

A different approach to “connectivity/dynamics™

A different approach to finding “sources”
A different approach to “temporal profiling” events/states



What are oscillations?

* synchrony among neuronal populations in fluctuation of neuronal excitability (de/polarization)

A1l Asynchronous state B1 Oscillating state
8000 — . S _ -
Principal
cell #

2000z S A B AR m- TN
o Inter- .bt\,;' 3 S, Ty are .:.r‘_‘. s ::. _'.{ . f‘;,x’ ’.57;:€ 82 S
NEUTON # i de Sadd s n iab's i v,

A3
Average
fring rate
(Hz)

A4

Membrane
potential -50
(mV)
-70.

A5 1
Synaptic
current (nA)

Time (ms)

O

—A
N
o

a0 Hz amplitude - average firing rate

I

firing rate (kHz)

Sub-population

=

—
o
Sub-population
FFT amplitude (kHz)

o
o

Time (ms) ime (ms O Frequency (Hz) 100

Akam & Kullman 2010 Neuron




Why do oscillations exist?

Input networks

Convergent
pathway

"Lt Qutput network

Input
rate

Neuron #

Akam & Kullman 2010 Neuron

Within cell, energy efficient mechanism of ensuring that neurons respond to inputs without being
oversensitive to noise (Buzsaki).

Between cells, means of binding of functional ensemble of neurons (red - synchronous state
bopulation) via driving of output network spatial frequencylfiring pattern (Akam & Kullman).



Types of Oscillatory Mechanisms

feedforward excitation produces activity; oscillations can arise from
biophysical time constants on pyramidal cells (e.g.,
neurotransmitters, epilepsy hypersynchronization)

feed forward inhibition with ambient activation can produce unstable
oscillation; in this inhibition based oscillation, frequency is dependent
on GABA-ergic time constants, €.g., fast-acting GABAa receptors =>
40-100Hz (one of the most.common rhythms throughout cortex)

) — Feedback
kKA
inhibition with excitation

) produces stable
oscillation

osclllations = circuitry
frequency = biophysics of oscillators => localization”?



- ____._._——-* )

thalamic input

cortical output

Buzsaki (Rhythms of the Brain)

* Interaction between excitatory (pyramidal) and inhibitory
(GABAa-ergic interneurons) neurons



Measuring Oscillations
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—xtracting temporal flow of oscillatory effects

Freq. decomp. Sum of freq.
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Event Related Spectral Perturbation (ERSP)



WWe
L

QEEG
Time (sec)

Frequency

Event Related Spectral Perturbation (ERSP)
event related changes in frequency content of signal



Classes of Osclllations in Rat Cortex

J0-80 Hz, gamma

10-30 Hz, beta —e—o

4-10 Hz, theta —e—i

0.37 2.72 20.09  148.41
frequency (Hz)

Buzsaki Science 2004

linear progression on logarithmic scale with constant ratio between neighboring frequencies
typically different neighboring classes compete with one another within single network
multiple frequencies can exist temporally within network and interact



Classes of Oscillations in Human EEG

30-60 Hz Gamma

S Mt g irinithy S opihig - Beta | 18-21 Hz Beta

MW}‘WIMWWWNW‘( Alpha 9-11 Hz Alpha

JWWWW Theta 4-7 Hz Theta

A pdt s Delta
0.5-2 Hz Delta
I
M\/ Low Delta | second




Gamma (>40Hz)

Hippocampus & Entorhinal Cortex, Fisahn et al., 1998, Gamma 40Hz
Neocortex Gamma (Visual Cortex), Gray & McCormick 1996, Gamma /0Hz+

High Recognition

F]

0
200 -200 0 400
[ime from stimulus onset (ms Time from stimulus onset (ms)

274
o
-

Coherence

i'
-
=
&
V.

e\
JO
\

Gamma Coherence
v of baseline)

Frequency (Hz)
Coherence

hation _ Pl — Jutras, Fries & Buffalo (2009) JNeuro
Gamma in Hi predicts recognition
spike synchrony intracortical recordings




Womelsdorf, Fries, Mitra & Desimone (2006) Nature
gamma in visual cortex predict attention & RT (and perception)
spike synchrony intracortical recordings

. N - N
~ Spike-LFP coherence
+

\\@ K\{D @ Mean RT: 348 ms

Bartouch [~ 1
Fixaion . 1
Sty — I 7L
Time =" T § T /4 A B

Stim., 0.55s Colour Resp,
onset change

b Mean RT: 498 ms

-—
~

-
—
--——

—

-
..
—
punny
-—
-
-
-
-
L
—
A
-
-—
.-

Time 100 ms

Spike-fiel
coherence

Frequency (Hz)

Gamma seems to correlate with processing efficacy of neuronal populations or perhaps activation of a
neuronal ensemble.



Gamma is hard to image with EEG/MEG:

- lower power
C (4 = 9 o o .
- in ‘artifact’ range (muscle, microsaccades, high-freq noise)

- most human gamma recording are intracortical

|F(u)| ~ SubjectLB  SubjectAM  Subject EB

Frequency All Trials
domain J

5 With Saccades ¢

Frequency

Activity power spectrum 'P<0.001

»/\’\«\N"V\/M No Saccades P .
M "0 200 400 ms

P Values:

-

Power 10*log, (uWW/Hz

1 1 Not significant
20 30 Significant Increase

Frequency (Hz) Significant Decrease

The most prominent oscillations in scalp EEG fall in lower frequency range
(4-7Hz, 8-12Hz, 13-30Hz).




EEG:Alpha (8-12 Hz)

- described by Hans Berger in 1929 (but not task related)
- decreases during stimulus processing (ERD), typically over occipital electrodes and localized
to occipito-parietal sources

- increases also observed (ERS)

- Klimesch (1999; 2007) gating/inhibition theory of alpha

ERS (nO baseline) 10L0g, ,(mVZ/H2) ERSP (Iog)
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Granchamps & Delorme (201 1), Frontiers
animal/non-animal categorization
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Palva (201 1)



In/m

v

Interneuron
Cortical
neuron

Reticular
neuron

Thalamocortical
neuron

Ventrobasal Centrolateral
(specific) (non-specific)

Llinas, 1 984
Lopes da Silva 1974

* thalamo-cortical relay neurons contribute to
oscillations in alpha range

* circuit of excitatory and inhibitory neurons
(GABAergic neurons of reticular nucleus and TC relay
neurons)

* frequency depends on degree of hyperpolarization
at inhibitory synapses, which varies with which ionic
currents are open (10Hz vs 3Hz)



EEG:Alpha (8-12 Hz)

Bollimunta et al,, 201 1, ] Neuro

Bollimunta et al. ® Neuronal Mechanisms and Attentional Modulation

C 1v1 |
‘ "'\.'.J'l. . 'IV-'_.

A B

ERP & CSD
6 => LGN => 4c => 6

Granger Causality analysis to model alpha generation across layers
- layer 4 generators to superficial layers with additional drivers of alpha in deep layers 5/6
- suggest thalami-cortical signal contributes to generation of alpha in visual cortex
- found also that attention can suppress alpha rhythms in cortex (modulator inputs)



EEG: Theta (4-7 Hz)

Onton, Delorme, Makeig (2005), Neurolmage

- observed locked to stimulus and during maintenance (increases with load), typically
localized to medial frontal sources, observed over frontal electrodes

- associated with memory formation
- long history of study in entorhinal cortex

Memorize Resp.

Fixation / \ Maint. Probe
| + ” \ GP “ §w§-fT
S s —— IR | JEOIEANS] | ReSERNS EEEGS ST BRSO BSOSOl AR U (P BN

5s

14s 2-4s

Memorize Letters
Fixation Load: 0 2 3




EEG: Beta (13-30 Hz)

- has not been as commonly studied in event-related studies as alpha/theta
- qEEG decreases during movement (with post movement rebound), increases during
“active states”, observed across scalp

hand area / C3 footarea / Cz

Neuper et al, (2001)
Clinical Neurophys, |12 (2084-2097)



Cross-Frequency Interactions

* like gamma, lower frequencies associated with “‘stability’”’ of a neural representation;

perhaps also stability of neural ensemble
* however low/high frequencies differ in critical ways:

* higher frequencies associated with a (smaller point spread
function) whereas lower frequencies associated with broader spatial extent

* higher frequencies associated with degree of whereas lower
frequencies associated with excitability (gain => modulatory characteristic)

* higher frequency amplitude to lower frequency phase

Slow oscillatory influences reflect modulatory influences on local
processing?

...von Stein & Sarnthein (2000), Bressler (2005), Palva & Palva (2007), Doesburg (2009), Buzsaki (1998; 2010; 2012),
Varela (2001), Shroeder & Lakatos (2008) etc.



Quantifying Frequency Coupling

The phase of lower frequencies tends to modulate 'the amplitude of
higher frequencies (cross-frequency phase-amplitude coupling).

bulldnon
apn)jdwy-aseud




Coupling for Memory Encoding

learning & consolidation (memory, sleep)
e.g., hippocampus pulse trains-aelivered at trough:-of theta
population response; trains:produce LI PH{vs LT D)

‘neural syntax:

2004 Buzsaki

probability probability

0 e - 37.44 Hz

20

i P mmmunun

the type of response (fast/slow; size of
place field) varies across Hippocampus

Buzsaki 2010 Neuron 68, 382-385



Theta/Alpha Modulation in Neocortex

working memaory
e.g., auditory task anterior theta/gamma - coupling ; visual task
posteror alpha/gamma coupiing

Frequency (Hz)
Arbitrary units

Normallized frequency
coupling differences

Posterior alpha/gamma
visual coupling

N
@

- A,
Kenquy

N
°
spun

250 0 250 500
Time (ms)

Frequency for amplitude (Hz)
Modulation index

2 4 6 8 1012141618 20
Frequency for phase (Hz)

Canolty & Knight (2010) TiICS



Oscillations in EEG Signals

Berger 1924
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5Hz

A different approach to “connectivity/dynamics”

A different approach to finding “sources”
A different approach to “temporal profiling” events/states



EEG Future?

® Need stronger tools for source analysis
x Continued integration with other modalities

» Portable adaptations



®x Combines well with other methods

x EEG & ECoG;, EEG & fMRI, EEG & MEG

®x but need continued analytics development




x Adaptable & Practical

®x Dry electrodes, portable devices, motion

Neurofocus :
SRR UOsSh Tzyy-Fing Mobile Brain/Body
e Jung Imaging @ UCSD

Cognionics



Happy EEG-ing.

DOCTOR FUN - 2000

or personal viewing
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"Watch when | turn on the bubbles!”




