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• Today’s Lecture	



• Basic Diffusion MRI Physics	



• How do we measure diffusion? What are the assumptions?	



• What factors influence our measures of diffusion?	



• Simulations & Random Walks	



• Anisotropic diffusion & Diffusion Tensor Imaging	



• Mono-, bi-, and stretched-exponential diffusion imaging	



• Diffusion kurtosis imaging (DKI)	



• q-space, q-ball, and diffusion spectral imaging (DSI)

Overview
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• Next Time 

• Brief Review 

• Tractography (Deterministic & Probabilistic)	



• Applications	



• Neuro-Oncology	



• Neurotrauma	



• Alzheimer’s Disease	



• Parkinson’s Disease	



• Epilepsy	



• Chronic Pain

Overview



B.M. Ellingson, Ph.D., Dept. of Radiological Sciences, David Geffen School of Medicine, 2014 M284: Principles of Neuroimaging

• The NMR signal is not detected for a single spin, but rather via a coherent 
superposition of many spins	



• As such, we need to adopt an “ensemble-averaged” view in order to 
understand the behavior of the entire system	



• This means taking into account spin movement, whether that be coherent 
motion (velocity) or incoherent motion (diffusion)	



• The motion of a spin i can be characterized by some time-dependent 
displacement ri(t) relative to an arbitrary origin point	



Molecular Translational Dynamics

Time = 0 Time = t
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• Since we are talking about ensembles of spins, it is helpful to talk in terms of 
statistics and probability of finding a spin at a particular location at a particular 
time	



• The probability of finding that a spin will have displacement r’ at time t, given 
the starting position r is P(r|r’, t)	



• This is the probability of finding a particular scattering spin positioned at (r’, 
t) if there was a scattering  by the same spin at (r,t).  [ Spin Self-Correlation]	



• The total probability of finding a spin at position r’ at time t given an initial 
position of r is 	



Molecular Translational Dynamics

Time = 0 Time = t

Particle Density
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• An application of the function             is using Fick’s Law of Self Diffusion	



• Fick’s first law of diffusion says “the particle flux (per unit area per unit 
time) is proportional to the particle concentration gradient.”	



!

!

!

!

• By applying the conservation of mass,                   we arrive at Fick’s second 
law of diffusion:

Fick’s Law of Diffusion

Spin	


ConcentrationSpin Particle Flux

Diffusion Coefficient	


(Diffusivity)



B.M. Ellingson, Ph.D., Dept. of Radiological Sciences, David Geffen School of Medicine, 2014 M284: Principles of Neuroimaging

• If we start with the initial condition                                       	



!

• We see that (in our experiment) concentration can be written in terms of 
the probability of a spin at time 0 (or just spin density)	



!

• And we can rewrite Fick’s second law in terms of spin density/concentration 
as:	



!

!

!

• Assuming the diffusion coefficient is a constant (doesn’t change over space 
or constant for a single voxel)

Fick’s Law of Diffusion

Impulse
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• Assuming no restricted diffusion (or the boundary conditions:                     
as                        )	



• The solution becomes:	



!

!

• Note that the solution to this probability relies on              and not the 
initial position. Therefore, defining                        yields: 

Fick’s Law of Diffusion for NMR

Time = 0 Time = t

Gaussian  Distribution
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• We can expand this equation in 3-D as:	



!

!

!

• If we are only concerned with the diffusion in 1-D (say the z-direction), the 
integration results in 	



!

!

!

• Central limit theorem says that the average displacement must be zero 
(because no net coherent motion, or velocity, is considered)

Fick’s Law of Diffusion for NMR
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• Therefore, the second moment (variance) of spin displacement can be found 
as 	



!

!

!

!

• Note that this is also the same as the variance in the change of 
displacements, since we previously assumed z = 0. 

Fick’s Law of Diffusion for NMR



B.M. Ellingson, Ph.D., Dept. of Radiological Sciences, David Geffen School of Medicine, 2014 M284: Principles of Neuroimaging

• In order to measure the displacement of spins we must employ motion 
probing gradients	



• In an ideal sense, let’s employ an impulse gradient in the z-direction with 
magnitude Gzδ, which will to phase encoding the spin’s initial position:	



!

!

!

• Then, at some time Δ later, we employ a gradient of equal amplitude of 
opposite polarity:

Measuring Displacement using NMR

Gzδ

Gzδ
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• The net accumulated phase can be found as:	



!

!

!

!

!

!

!

• The second moment (variance) in phase is thus:

Measuring Displacement using NMR

Gzδ

Gzδ
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• Substituting the definition for diffusivity found in Fick’s second law of 
diffusion for NMR:	



!

!

!

!

!

!

!

!

!

• The diffusivity, D, can be found as:

Measuring Displacement using NMR

Gzδ

Gzδ

Δ
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• How do we measure             ?	



• If we could measure all the spins in the system individually, then we could 
construct the spin PDF and estimate variance	



• However, we only obtain a single NMR signal for a voxel representing the 
ensemble average spin signal	



• For intravoxel, incoherent motion only (no flow...i.e. no phase bias), the 
ensemble average spin density             will occur at 

Measuring Displacement using NMR
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• How do we measure             ?	



• If we could measure all the spins in the system individually, then we could 
construct the spin PDF and estimate variance	



• However, we only obtain a single NMR signal for a voxel representing the 
ensemble average spin signal	



• For intravoxel, incoherent motion only (no flow...i.e. no phase bias), the 
ensemble average spin density             will occur at 	



• If there is coherent motion (flow), the phase accumulation will be 

Measuring Displacement using NMR
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• How do we measure             ?	



• If we could measure all the spins in the system individually, then we could 
construct the spin PDF and estimate variance	



• However, we only obtain a single NMR signal for a voxel representing the 
ensemble average spin signal	



• For intravoxel, incoherent motion only (no flow...i.e. no phase bias), the 
ensemble average spin density             will occur at 	



• If there is coherent motion (flow), the phase accumulation will be 	



• Fortunately, we have an equation to describe the shape of the spin density 
PDF 

Measuring Displacement using NMR
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• Recall the probability of a spin diffusing a distance z at time t is:	



!

!

!

• Substituting our definitions for the current experiment:

Measuring Displacement using NMR

Gaussian  Distribution
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• We see from inspection that the variance in Φ results in attenuation of the 
NMR signal   	



!

!

!

!

!

• If we think about this in terms of individual spins in an ensemble, the total 
NMR signal can be estimated by:

Measuring Displacement using NMR

Coil Factor/Coupling

Spin Density

Phase from Individual Diffusing Spins	


with application of	



“diffusion sensitizing gradients”
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• This sum can be evaluated once the net phase distribution is known	



• Assuming free diffusion in a homogeneous medium and conditional 
probability of finding a spin initially at z1 at z2 at time Δ:	



!

!

• For which the conditional probability follows the Gaussian approximation 
(for free diffusion):	



!

!

• If we think about this in terms of individual spins in an ensemble, the total 
NMR signal can be estimated by:

Measuring Displacement using NMR
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• If we now run our experiment once with the diffusion sensitizing 
gradients turned on and once without diffusion sensitizing gradients 
(but same TE, TR, etc)

The Diffusion Weighted Imaging Experiment

where

b-value 
“level of diffusion weighting” 

“Gradient Factor”

Signal attenuation	


with increasing D
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• The diffusion coefficient can be estimated by:	



!

!

!

• If two diffusion weighted images is used (different b-values), then diffusivity 
can be calculated by: 	



!

!

• Or if more than two diffusion weighted images are used, linear regression 
can be used to fit ln(S) vs. b 

The Diffusion Weighted Imaging Experiment

Le Bihan & Basser, 	


Diffusion and Perfusion MRI, 	



Raven Press, 1995
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• Recall we previously assumed gradient impulses with amplitude Gzδ, but 
what happens when we use a pulsed gradient (fixed duration) instead?	



!

!

!

Pulsed Gradient Diffusion Experiment

Gzδ

Gzδ

Gz

Gz

δ

δ
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• The phase accumulation after the first pulse is calculated as:	



!

!

• And the phase accumulation after the second pulse is:	



!

!

• Thus, the net phase accumulation is the same as the impulse case	



!

!

• This is will work for 	



!

Pulsed Gradient Diffusion Experiment

Gz

Gz

δ

δ
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• Formally, we can express the total magnetization in terms of intravoxel 
incoherent motion (diffusion) and intravoxel coherent motion (flow) as:	



!

!

!

!

!

!

• Ignoring the effects of T1, T2, and Flow, and assuming diffusivity is uniform 
through the medium (in a voxel), we can simplify to:	



!

!

The Bloch-Torrey Equations

Velocity

IVCM IVIM

Transverse 	


Relaxation
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• If we apply a uniform gradient                              into this equation:	



!

!

• The solution to this equation is:	



!

!

!

• which can also be expressed as	



!

!

The Bloch-Torrey Equations
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• Or	



!

!

The Bloch-Torrey Equations
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• For the Gradient Echo NMR experiment at echo time TE:	



!

!

!

• For the Pulsed Gradient Spin Echo (PGSE) NMR experiment at echo time 
TE:	



!

!

DWI Experiments
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• Bipolar Gradients with Gradient Echo  

!

!

DWI Experiments

b = 2
3
γ 2Gx

2δ 3
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• Constant Gradient Spin Echo

DWI Experiments

b = 2
3
γ 2Gx

2δ 3
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• Constant Gradient Multiple Spin Echo

DWI Experiments

b = γ 2Gx
2δ 3

3n2



B.M. Ellingson, Ph.D., Dept. of Radiological Sciences, David Geffen School of Medicine, 2014 M284: Principles of Neuroimaging

• PGSE + Constant Gradient Spin Echo (From Stejskal & Tanner, 1965):

DWI Experiments

b = γ 2 2
3
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• PGSE-Trapezoidal Approximation

DWI Experiments

b = γ 2Gx
2 δ 2 Δ − δ
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• PGSE using STEAM (stimulated echo acquisition mode) 	



Advantage of long mixing time with little T2 decay because magnetization is 
stored in the longitudinal orientation

DWI Experiments
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• Oscillating Gradient Spin Echo (OGSE) 

DWI Experiments

b = γ 2Gx
2 3n

4π 2 f 3

Number of Cycles

Oscillation Frequency
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• Effects of Echoplanar Readout (Mattiello J, Basser PJ, Le Bihan D, Magn Reson Med 

1997, 37: 292-300)

DWI Experiments
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Assumption of No Boundaries
• Recall we assumed no boundaries to diffusion so                                as                             	



!

• Resulting in	



!

!

• In most conventional NMR experiments, the diffusion time t (analogous to ~Δ-δ/3 
in PGSE) is around 15-30 ms, meaning for a diffusion coefficient of 3x10-3mm2/s 
(approx free water) results in a mean (1D) displacement of 	



!

!

• Cells in the body vary from ~4μm to 100μm in diameter	



• This means our assumption of “no boundaries” or “free diffusion” is invalid!

Gaussian  Distribution
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Assumption of No Boundaries
• The measured diffusivity is therefore termed the Apparent Diffusion 

Coefficient (ADC) because we cannot accurately measure diffusivity using 
conventional MRI systems

n = 200 Subjects	


In collaboration with Dr. Kristen Tillisch & Emeran Meyer	



Center for Neurobiology of Stress
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Factors that Influence Diffusion Measurements
• Diffusion Time,τ ~ Δ-δ/3:	



• The diffusion time (mixing time) determines the sensitivity to 
compartment size	



!

• Compartment Size:	



• If compartment size < diffusion compartment sensitivity then we 
observe an ADC (vs. D)	



!

• Tortuosity of the diffusion compartment:	



!

!

• Viscosity and Temperature	



dx = 2DΔ

ADC =
dx 2

2Δ

ADC = D
θ 2

θ =
lactual

r − r0  

D = kT
6πηR

Temperature

Viscosity
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Factors that Influence Diffusion Measurements

ADC = D
θ 2

θ =
lactual

r − r0  
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Simple Diffusion NMR Simulations
• We will revisit the “unrestricted diffusion” assumption again later (q-space, 

kurtosis imaging, multiexponential diffusion, stretched exponential diffusion, 
double pulsed gradient, diffusion spectral imaging, and advanced applications)	



• However, we can use the signal equation to simulate spins in different 
environments and estimate the resulting signal (assuming δ<<Δ PGSE)	



!

!

!

• First, let’s introduce the “Random Walk”
Phase accumulated 	



for the nth spin
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Random Walk
• Let’s assume the 1D case first for simplicity	



• A spin at a given position x is said to jump to a new spatial position x + εiδ 
every τd seconds	



• Here, δ represents a very small positional change and εi is a random number 
with values ±1	



• During application of a linear gradient dB/dx = Gx in the x-direction, the 
external magnetic field a spin experiences after the jth time step is	



!

!

• The deviation in the magnetic field at time t = j·τd with respect to the initial 
position at t = 0 is:	



!

• And thus the phase accumulated at time t = j·τd is:
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j=1

N

∑ φ j ⋅τ d( ) = −G ⋅δ ⋅γ ⋅τ d εi
i=1

j

∑
j=1

N

∑
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Random Walk
• Using the PGSE approximation (δ<<Δ), the resulting NMR signal is	



!

!
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Random Walk

Position during “Mixing”	


Period

Position during 	


first pulse

Position during 	


second pulse

Position during 	


first pulse
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Random Walk

Position during 	


first pulse

Position during 	


first pulse

• Can use this equation to simulate biophysical environments	



• Boundaries, permeable membranes, etc.	



• Can make these simulations very complicated (different gradient 
shapes, model T1/T2, flow, etc.)	



!
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Assumption of Isotropic Diffusion
• Until now, we have assumed that diffusivity is uniform and have only 

measured diffusivity in 1 direction	



• If diffusion is anisotropic (i.e. unequal in all directions) we may over/under 
estimate the diffusion coefficient if we measure only a single direction	



• In Diffusion Tensor Imaging (DTI) we make 1D diffusion measurements in 
multiple directions, then construct the mathematical 3x3 tensor field that 
describes the magnitude and direction of spin self-diffusion 
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The Self-Diffusion Tensor
• The traditional diffusion tensor is constructed from 6 independent diffusion 

sensitizing directions, and a single b = 0 image	



!

• The diffusion coefficients for each of these 6 directions are calculated by 	



!

!

!

!

• where Di are the diffusion coefficients, Si are the MR signal after the ith 
diffusion direction was applied, b is the b-factor, and S0 is the MR signal with 
no diffusion weighting.
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• The measured diffusion coefficients can be written as:	



!

• where gxi represents the normalized gradient vector direction in the x-
direction for the ith diffusion direction, and Dxx, Dyy, Dzz, Dxy, Dxz, and Dyz are 
the diffusion tensor components	



!

!

• The matrix solution to the diffusion tensor can be written as:	



!
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The Self-Diffusion Tensor
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• For > 6 directions, least-squares regression (or some other type of fitting 
algorithm) must be used to find the solution
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The Self-Diffusion Tensor

 

!
D = Dxx Dyy Dzz Dxy Dxz Dyz

⎡
⎣

⎤
⎦

T

Reorganize

Symmetry

Solve Eigenvalue Equation

 
!
D − λ

!
I( ) !ν = 0

3 Eigenvalues: 	


Diffusion magnitude in 	


orthogonal directions

3 Eigenvectors: 	


Diffusion direction with respect to	


original coordinate system
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The Self-Diffusion Tensor Ellipsoid Model
The 3x3 diffusion tensor equation = conic section equation for an ellipsoid:

Di = g2
xiDxx + g2

yiDyy + g2
ziDzz + 2gxigyiDxy + 2gxigziDxz + 2gyigziDyz

From: Mori, Anat Rec, 1999
From: Basser, Biophys J, 1994

From: Ellingson, Concepts in MR, 2008
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The Self-Diffusion Tensor
• Diffusion Tensor “Stains”	



• Mean Diffusivity (Trace ADC) 	



!

!

!

!

!

• Fractional Anisotropy (FA)

MD = λ ' = λ1 + λ2 + λ3

3

FA =
3 λ1 − λ '( )2 + λ2 − λ '( )2 + λ3 − λ '( )2⎡
⎣

⎤
⎦

2 λ2
1 + λ

2
2 + λ

2
3( )
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The Self-Diffusion Tensor
• We will revisit DTI later in “Applications” Lecture	





B.M. Ellingson, Ph.D., Dept. of Radiological Sciences, David Geffen School of Medicine, 2014 M284: Principles of Neuroimaging

Monoexponential Diffusion
• Recall we assumed no boundaries to diffusion so:	



!

!

• Resulting in	



!

!

• Since we can only measure diffusion in a single direction at one time, 	



!

!

• This approximation during a bipolar motion probing gradient:

Gaussian  Distribution

as

as
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• We see that the assumption of a single, nonrestricted compartment results 
in a single exponential	



!

!

• Not only does this assume that diffusion is not restricted, but it also assumes 
a single compartment (single diffusion coefficient “D”)	



• Early investigations have shown that water diffusion in the brain is not 
monoexponential (at high b-values)

Monoexponential Diffusion

Niendorf et al., MRM, 1996
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• This lead to development of a biexponential diffusion model (sum of two 
Gaussians)	



• Still doesn’t deal with the assumption of non-restricted diffusion	



• Hypothesized to be biologically relevant (intracellular, slow vs. extracellular, 
fast)

Biexponential Diffusion

Niendorf et al., MRM, 1996
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• Let’s examine this model in more detail:	



• For the PGSE experiment, diffusion time τ = Δ - δ/3	



• Brain tissue is composed (primarily) of intracellular and extracellular 
subregions, partitioned by semipermeable cell membranes (vascular space is 
< 5% total brain volume)	



• The exchange between intracellular and extracellular water taking place 
during the diffusion time τ must be considered with respect to the mean 
lifetime τin(ex) of water molecules in both environments

Biexponential Diffusion - Two Compartment Model
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• In the short diffusion time limit: 	



• Diffusion time τ is negligibly short in comparison to the mean life time in 
either compartment 	



!

• The system will behave as two distinct nonexchanging compartments	



• Echo attenuation is the linear superposition of two monoexponential 
functions

Biexponential Diffusion - Two Compartment Model

Intracellular Extracellular
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• In the long diffusion time limit: 	



• Diffusion time τ is very long in comparison to the mean life time in 
either compartment 	



!

• The system will behave as one perfectly mixed (completely exchanged) 
compartment	



• Echo attenuation is monoexponential 

Biexponential Diffusion - Two Compartment Model

Intracellular Extracellular
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• Intermediate diffusion time limit: 	



• Analytic derivation in Kärger et al. (Adv Magn Reson, 1988)	



• Fits “apparent” biexponential parameters

Biexponential Diffusion - Two Compartment Model

Intracellular Extracellular



B.M. Ellingson, Ph.D., Dept. of Radiological Sciences, David Geffen School of Medicine, 2014 M284: Principles of Neuroimaging

• Intermediate diffusion time limit: 	



• Analytic derivation in Kärger et al. (Adv Magn Reson, 1988)	



• Fits “apparent” biexponential parameters

Biexponential Diffusion - Two Compartment Model

Intracellular ExtracellularIntracellular

Extracellular
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• Intermediate diffusion time limit: 	



• Analytic derivation in Kärger et al. (Adv Magn Reson, 1988)	



!

!

!

• Biologically (in the brain) fin ≈ 0.8 and fex ≈ 0.2 	



• Din < Dex due to higher protein concentrations and viscosity in cytosol	



• Decrease in τ will increase deviation from monoexponential

Biexponential Diffusion - Two Compartment Model

Intracellular Extracellular
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• Although this model is appealing, careful studies have shown the volume 
fractions calculated are actually flipped from expected (Mulkern NMR Biomed, 

1999; Clark CA, Magn Reson Med, 2000)	



• Tissue is more complex than two compartments (we haven’t discussed the 
potential contributions of permeability of the “semi” permeable membrane)	



• The result of these findings is that these biexponential diffusion 
coefficeints are no longer referred to as “intra” and “extra” cellular 
diffusion coefficients	



• Instead, they are “fast” and “slow” diffusion coefficients and “fast” and 
“slow” diffusion compartments

Biexponential Diffusion - Two Compartment Model
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• The experiments by Mulkern and Clark in 1999-2000 resulted in a new 
exploration of diffusion models for explaining the non-monoexponential 
diffusion behavior	



• In brain tumors, the environment is highly heterogeneous (cell sizes, shapes, 
tortuosity of EC space, edema, changes in extracellular matrix)	



• Need a model that is flexible and can give a measure of compartment 
heterogeneity	



• The Kohlrausch-Williams-Watts model (stretched-exponential model) has been 
used in many areas of NMR (e.g. multiple compartments with different T2)

Stretched (continuous) Exponential Model

Bennett, MRM, 2003 

Heterogeneity Index 	


0 < α < 1

Distributed 	


Diffusion Coefficient
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• Sensitivity of the diffusion signal due to changes in α	



!

Stretched (continuous) Exponential Model

Bennett, MRM, 2003 
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• Normal values in (rat) brain	



!

Stretched (continuous) Exponential Model

Bennett, MRM, 2003 
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Diffusion Kurtosis Imaging (DKI)
• Until now, we have assumed diffusion is non-restricted = Gaussian PDF	



• If diffusion time is long compared to compartment size, the boundaries/
compartments can cause diffusion water molecules to “reflect” or “scatter”	



• This results in deviation from Gaussian PDF and “kurtosis” in the PDF arises	



!

Wu et al., NMR Biomed, 2010

Forth order moment	


about the mean

(Standard Deviation) 4
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Diffusion Kurtosis Imaging (DKI)
• Until now, we have assumed diffusion is non-restricted = Gaussian PDF	



• If diffusion time is long compared to compartment size, the boundaries/
compartments can cause diffusion water molecules to “reflect” or “scatter”	



• This results in deviation from Gaussian PDF and “kurtosis” in the PDF arises	



• For the 1D DWI experiment, Kurtosis can be found by:	



Monoexponential

Deviation from	


Monoexponential

Jensen, NMR Biomed, 2010
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The q-Space Propagator

• Previously, we have seen that NMR provides a mechanism for molecular 
labeling via the characteristic Larmor frequencies of the component nuclei	



• This label is the phase of the transverse magnetization, a concept that is at 
the heart of MRI 	



• Diffusion MRI is performed by first providing a spatial label to nuclei at one 
instant of time, then checking that labeling at a later time to see if it moved.	



• If we could measure the label shift on the individual nuclei, then we can 
deduce the motion	



• The measurement of microscopic (translational) motion, therefore, is 
performed by measuring phase differences	



• For this the spin echo is ideally suited
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The q-Space Propagator

• In q-space imaging, we will be perturbing the diffusion sensitizing gradient 
amplitude in order to study the reflection of spins off boundaries	



• Assume a homogeneous medium (voxel, single diffusion coefficient)	



• Use the assumption/PGSE sequence w/ 	



• Recall that the NMR signal will depend on the probability density function of 
spin displacements and the NMR “encoding”	



!

!

!

• Big Picture: 1) Keep diffusion time Δ large enough to bounce off boundaries, 2) 
Use the gradient ↑G to ↑ϕ to probe smaller and smaller compartments using 
phase, 3) average signal represents the “ensemble” behavior of spins restricted in 
the compartment
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• We see that from this equation that we can use the gradient G to probe a 
range of phase distributions for a fixed diffusion time, Δ	



!

!

!

• If we substitute a new “reciprocal space vector” or “diffusion wave vector”  
q defined as	



!

!

• And substitute the distance vector	



• The signal equation becomes

The q-Space Propagator
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• From inspection, we can see that if we collect the signal amplitude as we 
increase the gradient amplitude (“sample q-space”) we can use the Fourier 
transform to recover the PDF for a certain diffusion time Δ	



!

!

!

• Until now we have assumed a diffusion coefficient, D that is fast enough to 
cause spins to “reflect” off the boundaries at least as large as a in diameter 
in diffusion time Δ	



• This results in the necessary condition

The q-Space Propagator
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The q-Space Propagator

Callaghan, J Magn Reson A, 1995
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The q-Space Propagator

Coy A, Callaghan, J Chem Phys, 1994
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The q-Space Propagator

Coy A, Callaghan, J Chem Phys, 1994

in
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The q-Space Propagator

Cohen, NMR Biomed, 2002



B.M. Ellingson, Ph.D., Dept. of Radiological Sciences, David Geffen School of Medicine, 2014 M284: Principles of Neuroimaging

The q-Space Propagator

Cory, Magn Reson Med, 1990
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The q-Space Propagator

Assaf, Magn Reson Med, 2002
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The q-Space Propagator

Assaf, Magn Reson Med, 2002
Cohen, NMR Biomed, 2002
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The q-Space Propagator

Cohen, NMR Biomed, 2002



B.M. Ellingson, Ph.D., Dept. of Radiological Sciences, David Geffen School of Medicine, 2014 M284: Principles of Neuroimaging

Q-Ball Imaging

Cohen, NMR Biomed, 2002

• Until now, we have considered q-space imaging in 1D	



• If we expand to 3D, this is known as q-ball imaging	



!

!

• The goal is to determine the orientation distribution function ODF which 
tells us information about the orientation of microstructures	



• For Q-Ball imaging, we set |q| (sensitive to the same compartment size), but 
vary the gradient orientation (unit vector u).  	



• If we assume a Gaussian PDF, we can deduce the compartment size P(qu) 
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Q-Ball Imaging

Perrin, 2005

• Until now, we have considered q-space imaging in 1D	



• If we expand to 3D, this is known as q-ball imaging	



!

!

• The goal is to determine the orientation distribution function ODF which 
tells us information about the orientation of microstructures	



Tuch, Magn Reson Med, 2004
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Q-Ball Imaging

• The direction of largest (preferential) diffusivity will be perpendicular to the 
orientation of highest signal amplitude with fixed q	



!

!

• The ODF can be approximated using the Funk-Radon Transform	



!

!

!

!

Wedeen, Magn Reson Med, 2005
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Q-Ball Imaging

Funk-Radon Transform 
(Approximation)

Exact Solution Zeroth order Bessel function

q’ = set q-value for experiment

Hankel Transform

Planar Radon Transform
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Q-Ball Imaging

Tuch, Magn Reson Med, 2004
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Q-Ball Imaging

Tuch, Magn Reson Med, 2004
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Diffusion Spectral Imaging

Wedeen, Magn Reson Med, 2005

• It is possible to construct a large “grid” with q-values, sampling q-space in 3D	



• The PDF can be reconstructed by Fourier transform as:	



!

!

!

• We can then resample this PDF in cylindrical coordinates to find ODF
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Human Connectome Project

Diffusion Spectral Imaging
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Human Connectome Project

Diffusion Spectral Imaging
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Next Lecture…

• Tractography (Deterministic & Probabilistic)	



• Applications	



• Neuro-Oncology	



• Neurotrauma	



• Alzheimer’s Disease	



• Parkinson’s Disease	



• Epilepsy	



• Chronic Pain


