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F O C U S  O N  T H E  N E U R O S C I E N C E  TO O L B OX  R E V I E W

The more powerful an experimental method, the more care must be 
taken to ensure its correct application. The two leading methods for 
measuring the activity of many neurons simultaneously, multichannel 
electrophysiology and population calcium imaging, have benefited 
from an exploding range of technical innovations. The increasing 
complexity of these methods, however, requires increasingly sophis-
ticated approaches to ensure the quality of the data recorded. Quality 
control is more essential than ever to ensure that the scientific conclu-
sions based on data from these methods are correct and not a result 
of experimental artifacts.

In this review, we discuss some factors that can affect data quality 
in neuronal population recordings. Careful experiments, of course, 
are the foundation of high-quality data. Experimental design involves 
inevitable tradeoffs, for example, between the number of neurons 
that can be recorded and the error rates that are acceptable. It is also 
important that scientists use appropriate data processing techniques 
to reliably identify individual neurons, and detect when signals are 
likely to be corrupted. At present, as with many other techniques, 
the involvement of human operators has an important role in these 
quality-control procedures and is currently unavoidable. Although 
effective at catching or correcting data quality problems, input from 
human operators can also produce bias if not carefully applied.

There can be multiple types of experimental errors in neuro-
physiology, and their importance depends on the scientific question. 
False-positive errors, the assignment of spikes to a neuron that did 
not actually fire them, can lead to invalid conclusions about how 
information is encoded. False-negative errors, the omission of spikes 
that a neuron genuinely fired, will have a potentially milder con-
sequence of underestimating firing rate and reliability, but only if 

the errors occur at random: if the errors are themselves correlated 
with other factors (such as particular patterns of network activity, 
bursting or movement), then invalid conclusions could again arise. In 
population recordings, false-positive and false-negative errors often 
arise together, resulting from the incorrect assignment of one cell’s 
spikes to another, from the incorrect merging of multiple cells’ spikes 
together or from incorrect splitting of a single neuron’s spikes into 
multiple detected cells. These correlated errors can lead to poten-
tially invalid conclusions about population coding and correlation 
patterns. Furthermore, selection bias (a systematic failure to detect 
certain types of cells) can give an incorrect picture of how information 
is encoded at the population level.

Ultimately, a proper understanding of the limitations in current  
experimental techniques will only be achieved when sufficient ‘ground 
truth’ data have been collected. In practice, ‘ground truth’ refers to 
the measurement of neural population activity simultaneously with 
a method such as on-cell electrophysiology that offers nearly perfect 
detection of all spikes fired by a single neuron. Such data are pres-
ently rare. Nevertheless, the existing ground truth data, together with 
other approaches such as simulation, have helped the field develop an 
understanding of the types of confounds that can occur and methods 
to identify or correct errors. Careful application of these approaches 
can help to ensure that scientific conclusions based on data from 
population activity measurements are robust.

Extracellular electrophysiology
Extracellular neuronal recordings are typically performed by insert-
ing microelectrodes, insulated everywhere except one or more small 
recording sites1. The signals from the electrodes are amplified and 
digitized with a sampling frequency in the range of 20–30 kHz, the 
rate required to resolve extracellular action potentials waveforms 
(spikes) lasting on the order of 1–2 ms. In addition to spike wave-
forms, the extracellular voltage contains a higher amplitude, lower 
frequency ‘local field potential’ signal, which is typically separated 
from the spike signals by filtering and used to provide an indirect 
measure of ongoing global activity patterns.

An electrode with a single recording site can detect the activity of 
multiple neurons, but to separate the activity of these cells requires 
appropriate computational analyses. Typically, spikes are detected as 
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Understanding how the brain operates requires understanding how large sets of neurons function together. Modern recording 
technology makes it possible to simultaneously record the activity of hundreds of neurons, and technological developments will soon 
allow recording of thousands or tens of thousands. As with all experimental techniques, these methods are subject to confounds 
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crossings of an amplitude threshold, and a waveform is extracted for 
each spike and temporally realigned to subsample resolution. Because 
the extracellular spike amplitudes and waveform shapes produced 
by different neurons at any one point in space can differ2, the firing 
of individual neurons can be separated by classifying the waveforms 
into discrete groups, a process known as spike sorting3–7. The peak 
amplitude of the spike decreases with the distance from the neuron 
to the recording site, and for neurons located closer than ~50 m 
from the electrode tip, the spikes are large enough to be detected over 
background activity and it is often possible to separate them according 
to their shapes1,8. For neurons further away, up to about 150–200 m 
from the electrode tip, spikes can be detected, but the difference in 
their shapes is masked by the noise and they are grouped together as 
‘multiunit activity’. Neurons further away cannot be detected and they 
contribute to the background activity in the recording.

Why is spike sorting necessary? The importance of spike sorting 
is illustrated by intracranial recordings made in the human brain. 
Consider an example recording made with an intracranial micro-
wire electrode, implanted for clinical reasons into the hippocampus 
of an epilepsy patient who viewed pictures presented in random order 
(Fig. 1)9,10. If one were to consider all detected spikes, without spike 
sorting, no obvious increase over baseline firing rate is visible for 
any of the stimuli. After separating the neurons on the basis of spike 
shapes, however, a very different conclusion emerges: the spikes in 
the original signal reflected the mixed activity of multiple neurons, 
and these neurons were extremely selective to individual pictures: one 
neuron responded reliably to a picture of Vladimir Putin and another 
responded to a picture of the Taj Mahal. The spikes from these two 
neurons represent only about 4% and 1% of the total number of spikes 
recorded in this electrode, respectively, and this extreme selectivity 
could not have been detected without spike sorting. In general, the 
selectivity of single units in the human medial temporal lobe is higher 
than the selectivity observed for multiunits, where it is not possible 
to separate the contribution of the different units11. Correct spike  
sorting is therefore essential for understanding the neural code 
employed by this brain circuit. Without it, one would not only miss 
very sparse responses, but also make the erroneous conclusion that 
the circuit employs a ‘dense code’, in which individual units conveyed 
information about multiple stimuli, rather than a ‘sparse code’, in 
which single cells are exquisitely tuned for particular stimuli.

Electrode design. The physical design of the electrodes used for 
extracellular electrophysiology makes a great difference to the type 
of signals recorded. Intracellular recordings represent a gold standard 
in neurophysiology, offering perfect spike detection and the ability  
to measure and control membrane potentials, estimate synaptic  

conductances, control the cell’s chemical environment, and stain 
for later anatomical reconstruction. Nevertheless, the difficulty of 
intracellular recording severely limits its use for large-scale studies. 
Electrodes placed directly outside the cell (juxtacellular or on-cell 
recordings) provide a somewhat easier way to obtain perfect isolation,  
but are still impractical to use at scale. Extracellular recordings, 
which rely on detection of electric fields tens of microns away from 
the recorded cell, are more straightforward, but also involve greater 
errors, which increase with the number of neurons recorded.

The quality of extracellular unit isolation depends on the amplitudes 
of extracellular spikes relative to background noise. This noise arises 
from two sources. The first is thermal noise, which increases with 
the resistance of the recording electrode (for example, see ref. 12) 
and can be ameliorated by coating with materials such as PEDOT13. 
The second noise source is the firing of the large number of neu-
rons that are too far from the recording site to produce sortable 
spikes (>~50 m), but superimpose to produce ‘hash’ in the same  
frequency range1,8.

Different electrode designs offer complementary advantages. Small 
electrodes (with diameter < 5–10 m and impedance >1 M ) record 
from only a few nearby neurons14, but can show excellent unit isola-
tion, as they can be positioned very close to the neurons of interest; 
given that spike amplitudes decay rapidly with distance2,8, this results 
in large amplitudes relative to background activity. Larger electrodes 
(diameter several tens of microns) have impedances typically below 1 
M  and record the activity of neurons in a larger area. For single sites, 
a smaller ratio of the amplitudes of nearby neurons to those of the 
distant cells contributing to the background activity leads to a lower 
signal-to-noise ratio (SNR). The optimal design of an electrode there-
fore depends on the techniques that are used to process the data: with 
limited spike sorting algorithms, it might be preferable to have small 
electrodes with large SNR, whereas with more advanced algorithms 
and multisite probes, larger, low-impedance electrodes can increase 
the yield of identified neurons15,16.
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Figure 1 Spike sorting is required to draw valid conclusions in extracellular 
electrophysiology. (a) Top, extracellular recording from a single microwire 
electrode in the hippocampus of a patient implanted with intracranial 
electrodes for clinical reasons. Bottom, overlapped all detected spikes  
(left) and the sorted spikes corresponding to two single units (clusters  
3 and 5). (b) Responses to five pictures presented in an experimental 
session. Considering all the detected spikes together, no response can  
be observed in the raster plots. However, a clear response to Vladimir  
Putin appears when considering only the spikes corresponding to cluster 
3 and a response to the Taj Mahal appears when considering the spikes 
corresponding to cluster 5. Time zero corresponds to stimulus onset.  
For space reasons, only 2 of 8 identified clusters and only 5 of the 14 
presented pictures are shown, but there were no responses for these other 
clusters and pictures. Adapted from ref. 9.
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An important and understudied question concerns the degree to 
which electrode insertion damages the neural tissue that is being 
recorded. Calculations based on the decay of amplitudes with distance 
suggest that a single tetrode should be able to detect the activity of 
up to 100 single neurons in hippocampus, but in reality one typically 
finds an order of magnitude fewer1. Although it is possible that the 
missing ‘dark matter’ neurons are healthy, but not firing, or firing but 
not identified by current spike sorting algorithms17, insertion of the 
electrode may also have damaged or killed a substantial fraction of 
them. Systematic investigation of how electrode geometries, materials  
and insertion strategies affect tissue damage would greatly help to 
optimize electrode design.

Multichannel electrophysiology
Understanding complex brain processes requires the analysis of large 
and simultaneously recorded neuronal populations1,18–22. Current 
multielectrode designs allow recording from hundreds of electrodes, 
and thus hundreds of neurons simultaneously4,23–27, and these 
improvements have been matched by increased capabilities of data 
acquisition systems.

There are two major approaches to the design of multielectrode 
arrays. The first approach—exemplified by microwire arrays that have 
been used for animal studies28, or the microfabricated ‘Utah arrays’ 
that have been implanted in human cortex to enable brain-computer 
interfaces29—consists of a large number of single-contact electrodes 
with an intersite distance of at least 100 m. As any individual neuron 
can be detected by at most one of the recording sites, data processing 
for such electrodes (and the corresponding quality concerns) is the 
same as for single-site electrodes. Thus, the recorded population size 
increases linearly with site count, although without independently 
movable contacts, many sites may not record neurons. Furthermore, 
isolation quality does not improve with increasing site count.

The second approach to multielectrode array design is to use 
dense arrays with an intersite distance of less than 50 m. This 
approach employs either twisted microwire bundles such as tetrodes 
(four microwires twisted together30,31) or micro-machined silicon 
probes1,32–35. High-density probes allow the recording of spikes of 
a single neuron from multiple sites. This improves spike-sorting  
performance, as the spikes of two neurons can frequently look identi-
cal on one channel, but differ on others31,36. With this method, unit 
isolation quality is expected to scale with site density, as confirmed by 
spatially subsampling of data from dense electrodes37. Nevertheless, 
the achievable number of sites is limited by constraints of manufac-
turing technology, for example, shaft diameter (probes that are too 
thick may damage brain tissue), or the increased noise found with 
small, high-impedance recording sites. Furthermore, the benefits of 
high-density probes require using spike-sorting algorithms that can 
combine information from different channels.

Spike-sorting methods. Spike sorting is more complex for dense 
arrays than for single contact electrodes. For tetrodes, the traditional 
method of spike sorting, still commonly applied in many labs, is 
purely manual cluster cutting. In this procedure, a set of features are 
computed for each spike, such as the peak amplitude on each channel,  
or waveform features evaluated by principal component analysis. 
Using a graphical interface, an operator manually draws boundaries 
around the resulting clusters, which correspond to putative single 
neurons. The operator is guided in this process by a number of addi-
tional tools, such as the computation of auto- and cross-correlograms, 
which can help to identify poorly isolated units by the presence of 
refractory period violations.

Today, the most commonly employed spike-sorting method is 
‘semi-automatic’. With this approach, spike detection and feature 
extraction proceeds as before, but an automatic cluster analysis algo-
rithm is run on the spike data and a human operator uses a graphical 
interface similar to those used for manual sorting to check its output 
and correct mistakes the algorithm has made where necessary (some 
examples of such possible mistakes are described below). Compared 
to purely manual spike sorting, the semi-automatic approach has two 
major advantages. The first is time: it takes substantially less human 
time to check the output of an automatic algorithm than to perform a 
fully manual sort. The second advantage is that this approach achieves 
substantially lower errors than purely manual sorting, as demonstrated 
using ground-truth tetrode data36. These lower error rates occur 
because the optimal boundary between clusters is a high-dimensional 
surface, which can be found by automatic algorithms, but not drawn 
by human hand using a two-dimensional computer interface36.

The presence of a human operator in the data-processing pipe-
line raises the potential for subjectivity and bias to occur. However, 
although a fully automatic spike sorting system would clearly be desir-
able, it has not yet proved possible to implement algorithms that work 
robustly in real-world extracellular recordings. Similar constraints 
are faced in several other fields of data-intensive biology, such as  
electron-microscopic connectomics, which also rely on manual 
operator curation38. Thus, although substantial developments have 
occurred to reduce the amount of manual operator time required for 
the sorting process37,39, fully automatic systems are rarely applied in 
current practice. Fortunately, analyses comparing the decisions made 
by multiple expert operators have shown that their corrections of 
automatic cluster performance tend to be similar17,37.

Validation of spike sorting. One of the largest problems for the devel-
opment of spike sorting methods is the paucity of ground truth data, 
in which extracellular arrays are combined with other methods to pro-
vide unambiguous recording of firing times. Although invertebrate 
and in vitro preparations have provided some data on which to test 
algorithms40–42, the noise conditions and non-stationarity found in 
mammalian systems in vivo are substantially more challenging. The 
difficulty of obtaining ground truth data in vivo has made such data 
very rare8,36,43 (https://crcns.org/data-sets/hc/hc-1). The data that are 
available, however, suggest that error rates for semi-automatic cluster-
ing with tetrodes can be on the order of 5–10%, but the error rates of 
purely manual cluster cutting may be substantially higher36.

In the absence of suitable ground truth data, a number of methods 
have been used to generate ‘surrogate’ ground truth to validate spike-
sorting algorithms. One approach consists of performing detailed bio-
physical simulations of extracellular activity44–46. The computational 
expense of this method, combined with uncertainty in exactly how to 
model the challenges of real data, has encouraged other authors to try 
a different method. In this hybrid approach, spikes isolated from one 
recording are digitally added at known times to a second recording or 
to a simulation of background activity16,47,48. This approach has been 
used to estimate the errors expected from semi-automatic analysis of 
high-count array data, again yielding an estimate of errors on the order 
of 5–10%37. An alternative approach relies on measuring the reliability 
of the spike-sorting algorithm under perturbations of the data set49.

Most current methods of spike sorting fail at times of high neuro-
nal synchrony. In the hippocampus, for example, transient events of 
highly synchronous neural activity known as sharp waves are of great 
interest because of their proposed role in memory. Ground truth data 
suggest that error rates during sharp waves can be fivefold higher than 
average, reaching levels as high as 50%36. Such errors could come 
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from two sources. First, synchronous activity might lead to temporally 
overlapping spikes, which cannot be resolved by traditional spike-
sorting algorithms, but might be resolvable by newer algorithms based 
on template matching50–53. Alternatively, sharp waves might lead to 
the firing of otherwise silent cells with waveforms too similar to be 
distinguished accurately; consistent with this possibility, sharp waves 
are accompanied primarily by an increase in false-positive, but not 
false-negative, errors36.

Common confounds in extracellular electrophysiology
Isolation quality. In even the best-quality extracellular recordings,  
most spikes will come from neurons far from the probe, with ampli-
tudes too low for effective isolation. It is therefore important to 
identify which clusters correspond to well-isolated single cells and 
which represent mixtures of several neurons. The importance of such 
metrics is underscored by the fact that different operators, although 
they generally agree on which corrections to make in semi-automatic 
clustering, can have very different opinions on what constitutes a 
well-isolated unit37.

To address this issue, several quantitative metrics of cluster quality 
have been proposed. Given that all neurons exhibit an absolute refractory  
period, any cluster that shows a large fraction of inter-spike intervals 
(ISIs) less than 1–2 ms cannot be a well-isolated unit. However, the 
converse does not apply: an apparently clear refractory period does 
not imply good-quality isolation. Indeed, a cluster that contained 
the intermixed spikes of two different neurons that fired at separate 
times (for example, hippocampal neurons with non-overlapping place 
fields) would have a completely clear refractory period. Furthermore, 
manual examination of autocorrelograms in the presence of bursting 
can lead to an erroneous impression of a clean refractory period even 
for very poorly isolated cells36.

A second class of quality metrics measures how well the spikes of 
one cluster are separated from those of neighboring neurons12,54–56.  
It is important to note, however, that there is no single threshold 
value that objectively defines ‘good’ isolation quality: the criterion 
must depend on the scientific application. For example, an analysis 
of the structure of complex spike bursts, which involves a progres-
sive decrease of amplitude as the burst continues (for example, see  
refs. 57,58), required a highly stringent criterion56. Accurate isolation 
is also critical for studying pairwise correlations of spike trains59–61; 
for example, if the spikes of a single neuron are artificially divided  
into two clusters, these clusters will show a spurious negative  
correlation because their spikes will be always separated in time. 
Estimation of neuronal tuning and selectivity can be also highly  
sensitive to clustering errors, as demonstrated by the earlier 
example of human intracranial recordings. By contrast, for brain- 
machine-interface applications, the exact identity of the neuron  
generating each spike might not be crucial, and it may be advantageous  
to use the largest possible number of recording sites in an unsuper-
vised way, even if not sorted at all62,63. Spike sorting may also be less 
critical where there is a topographic organization of responses—that 
is, when nearby cells tend to fire to similar stimuli—compared with 

cases when nearby neurons fire to unrelated stimuli, as has been 
described in the rodent64 and the human hippocampus9 (Fig. 1).

When using an isolation quality metric, how should a scientist 
decide what threshold value of isolation quality to require for a par-
ticular scientific question? A simple method is to consider how the 
quantity being measured depends on isolation quality. For example, 
the cross-validated spatial information encoded by putative pyramidal 
cells of rat CA1 drops substantially for values of isolation distance54 
less than 20, but reaches an asymptote above this value (Fig. 2).  
This suggests that a threshold of 20 is suitable for analysis of spatial  
information coding in these cells.

Selection bias. Simultaneous intra- and extracellular recordings sug-
gest that there should be approximately 140 single neurons in the 
radius recordable by a single tetrode in the hippocampus1,8. However, 
actual tetrode recordings rarely detect more than a dozen neurons at 
a time. The reason for this disagreement has been attributed to the 
presence of silent neurons65, electrical insulation66, damage produced 
by electrode insertion67 or a potential inability of spike sorting algo-
rithms to deal with large numbers of neurons17.

Both manual and automatic spike-sorting methods are likely to be 
biased against low-rate neurons: if a cell fires only a few spikes, these 
will not be sufficient to define a cluster and the cell will be missed. Given 
the preponderance of low-rate cells in brain circuits, a failure to account 
for this selection bias could lead to incorrect estimation of the firing 
distribution68. In neocortex, where superficial-layer pyramidal cells 
fire with lower rates than deep-layer pyramidal cells and fast-spiking  
interneurons of all layers69–72, bias toward high-rate neurons has led 
most population electrophysiology to focus on deep cortical layers.

Historically, single-neuron recordings have been performed by 
advancing the electrodes until neural activity is detected73. This 
method can lead to a different form of selection bias: not only will 
recordings be made primarily from high-rate neurons (perhaps again 
leading to a bias toward fast-spiking interneurons), but also from cells 
responding to the specific stimuli or conditions present at the time 
of the recording. Without care, this could lead to a “confirmation 
bias”: an investigator would find an over-abundance of neurons that 
respond precisely to the stimulus or condition being investigated.

Sampling bias in extracellular electrophysiology can be ameliorated 
by performing non-stop chronic recordings using fixed electrodes 
over very long time periods: recording continuously for days or weeks 
can lead to sufficient spike numbers to define clusters even for cells 
of very low firing rate39.

Operator bias. Because spike sorting has a manual curation step, the pos-
sibility of subconscious operator biases must be very carefully excluded. 
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Figure 2 Quantitative measures of unit isolation in extracellular 
electrophysiology. Each point represents a single neuron recorded in CA1 of 
a rat exploring an environment, showing isolation distance (a measure of unit 
isolation quality54) versus estimated spatial information content (which can be 
negative, as it is computed by cross-validation142). The red curve represents 
a running median. The curve reaches an asymptote of ~1 bit per s for values 
of isolation distance greater than ~20, indicating that this is the true average 
for well-isolated cells. Data were reanalyzed from ref. 142, with some points 
above the top of the y axis value truncated for visualization purposes.
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As with many other procedures, when comparing recordings of subjects 
in different conditions, it is essential that the operator performs manual 
curation blinded to the condition of each recording. This is particularly 
important when analyzing quantities such as stability of firing patterns, 
which can be easily altered by the manual curation step74.

Another important concern involves the use of the neuron’s firing 
correlates (for example, sensory receptive fields or place fields) in the 
spike-sorting process. Although observing a similar firing pattern in 
two clusters does make it more likely that they represent the same 
cell, the use of receptive field information during clustering may bias 
results. Indeed, if neurons genuinely show receptive field plasticity, 
this will be underestimated if response stability is taken as a criterion 
for good isolation.

Electrode and waveform drift. Errors in spike sorting are of two  
types. First,  the spikes of different cells can be erroneously merged 
together. Second, the spikes of a single cell can be erroneously separated 
into two or more clusters (overclustering), which often occurs when 
the spike waveforms of a particular neuron vary during the course of 
the experiment.

Waveform variability can occur for multiple reasons. The most com-
mon reason is ‘electrode drift’, the physical movement of the electrode 
relative to the brain. Given the highly localized electric fields neurons 
produce2,8,16, even a few microns’ movement is enough to cause sub-
stantial variability in spike amplitudes. This variability is largest for 
high-amplitude spikes, consistent with the sharply peaked structure 
of extracellular electric fields. This problem is particularly severe in 
acute recordings, in which the electrode is fixed not to the skull, but to 
an external manipulator, meaning that small movements of the head, 
or relaxation of the brain after compression caused by probe insertion, 
will cause a movement of the cells relative to the electrodes. Physical 
electrode drifts are less serious in chronic recordings, where stable 
recordings have been observed for periods of days or weeks39,75.

Not all waveform variability is caused by physical movement. 
Extracellular spike amplitudes decrease during the course of com-
plex-spike bursts and after prolonged firing, even without burst-
ing56,58. Moreover, extracellular waveform shapes can depend on 
cellular factors such as dendritic action potential backpropagation 
or electrogenesis, which can vary with firing history, inhibition and 
neuromodulation76,77. The difficulty of quantitatively modeling 
these phenomena is one reason fully automatic spike sorting has so 
far proved challenging; nevertheless, the fact that these effects can be 
caught during manual curation suggests that automatic systems may 
also be eventually possible.

Outlook
Although today’s silicon probes have a few hundred channels at most, 
probes with thousands of channels are currently under development. 
These probes will raise new challenges for data processing and quality 
control, the most important concerning manual spike sorting. Purely 
manual sorting is clearly impossible for this size of data, and even 
curation of semi-automatic sorting will become a serious burden. 
This burden can be markedly reduced by the development of algo-
rithms that minimize operator time by directing attention to only 
those decisions that cannot be made automatically. Fully automatic 
spike sorting not only becomes more desirable with very high count 
probes, but it may also become more achievable. Electrode drift and 
the consequent spike shape changes present one of the biggest barriers 
to fully automatic sorting; it is possible that large dense probes might 
sample the extracellular electric fields with enough spatial resolution 
to allow drift to be tracked and corrected in software.

A second challenge for spike sorting involves the long-term track-
ing of clusters to study plasticity, for example, during learning experi-
ments. With a few exceptions, scientists have been hesitant to use 
extracellular electrophysiology to study long-term plasticity of firing 
properties, as clusters may appear, disappear, merge or separate78–80, 
and it is critical not to confuse changes in tuning of neuronal popu-
lations with changes in the recording conditions or small electrode 
movements. Three techniques may ameliorate these problems. The 
first is the gradual refinement of chronic recording methods, which 
can now ensure high stability of many cells over multiple days or even 
weeks of recordings39,75,81. The second is the development of quanti-
tative methods for unbiased assessment of cluster similarity that may 
help to identify neurons across multiple days78,82–84. The third is the 
use of 24-h recording39, which reduces the problem to a much easier 
one of tracking slow continuous changes, rather than tracking across 
sudden jumps between recording sessions.

Finally, and most importantly, there is a need for research into fun-
damental questions underpinning extracellular array recording. What 
electrode geometries, surface contact diameters, impedances and 
materials provide the best data quality while avoiding tissue damage? 
How do these properties interact with the choice of sorting algorithms?  
The most critical experiments to solve this problem involve collec-
tion of ground truth data to quantify the performance of different 
electrodes and sorting methods without relying on simulations.

Population recording via calcium imaging 
Calcium imaging is a complementary technique for measuring 
the activity of neuronal populations. Depolarization during action 
potentials opens voltage-gated Ca2+ channels and results in a tran-
sient increase in intracellular [Ca2+], which can be detected opti-
cally using fluorescent reporters: calcium-sensitive dyes or proteins. 
Calcium imaging can be used to infer patterns of spiking activity 
across hundreds to thousands of identified cells in vivo85,86. Like any 
measurement, however, it demands careful application and analysis.

Calcium signals are correlated with neuronal spiking, but are an 
indirect reflection of it, and biophysical variations make the precise 
relationship between calcium signals and spiking variable87. Calcium 
reporters can themselves limit the precision of spike inference; 
although synthetic calcium dyes can be used in a linear regime, they 
still exhibit nonlinear features including saturation, and genetically 
encoded calcium indicator (GECI) proteins are highly nonlinear as a 
result of cooperative Ca2+ binding88.

The temporal resolution of the calcium signal is limited. Indicator 
kinetics are relatively slow (for example, rise times of ~10 ms for single 
action potentials measured with synthetic dyes, and >50 ms for many 
GECIs). Furthermore, imaging methods that scan over space trade off 
recordable population size against sampling time. Recordings from 
large neuronal populations often require time steps on the order of 
tens to hundreds of milliseconds86.

As with electrophysiology, the ultimate check on recording quality is 
ground truth, typically obtained by simultaneous on-cell patch record-
ings. Such recordings are feasible with some, but not all, calcium-imaging  
instrumentation. However, even in the absence of ground truth, good 
experimental design and rigorous analysis can improve data quality. 
Below, we discuss these considerations. Our discussion primarily 
relates to two-photon laser scanning microscopy, but several points are 
relevant to one-photon imaging, including wide-field imaging through 
GRIN lenses89 and light-sheet imaging in transparent specimens90.

Experimental design and measurement noise. As with any tech-
nique, instrumentation, preparation and recording parameters must 
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be tailored to the demands of the specific scientific application. Some 
experiments require the detection of single action potentials and/or 
the resolution of precise spike counts in each neuron with minimal 
uncertainty. For others, detecting qualitative increases and decreases 
in spike rate suffices. Experimental design is critical because most 
optimizations involve tradeoffs. For example, high zoom (many pixels  
per neuron) and high frame rate can provide faithful estimates of 
spiking based on calcium signals91, but also limit the number of 
neurons that can be sampled in each imaging frame. Low frame rate 
acquisition can be sufficient to map population responses when the 
stimulus changes slower than the acquisition rate: for example, Ohki 
and colleagues92 mapped the orientation-tuned responses of hun-
dreds of neurons at 0.61 frames per s, with a stimulus that changed 
at 0.0625 Hz. By contrast, Dombeck and colleagues93 acquired 15.6 
frames per s over smaller fields of view to capture the activity of 
hippocampal place fields with subsecond resolution.

Imaging quality depends primarily on recording a sufficient 
number of photons per pixel. Photon emission exhibits Poisson-
like variability (shot noise), with SNR scaling as the square root 
of the photon count94. Optimizing quality therefore requires tun-
ing parameters such as laser power and scan configuration, which 
includes parameters such as pixel dwell time, field of view and pixels 
per neuron, which are subject to the limitation that high laser power 
can cause tissue damage95. Optimized scan patterns96–98 can target  
sampling to individual neurons, but lack the spatial coverage required 
for post hoc motion correction. Photons per pixel can be estimated 
from parameters including the gain and offset of the photomulti-
plier tube (http://labrigger.com/blog/2010/07/30/measuring-the- 
gain-of-your-imaging-system/). Tradeoffs between photons per pixel, 
numbers of pixels and SNR can be quantified using signal detection 
theory and compared and optimized for specific experiments99–101. 
For example, GCaMP6s imaging can provide single action potential 
detection with nearly 100% detection of all spikes when imaged at a 
high frame rate over a small field of view (30 m × 30 m at 60 frames 
per s)91. However, larger field-of-view, population-level imaging  
(265 m × 265 m at 59.1 frames per s) yields spike rate estimates that 
correlate with the true spike rate at an average level of ~0.5 (Pearson’s 
R, using a 50-ms spike rate binning window)87. Quality is also affected 
by indicator properties and labeling intensity88,94. Typically, how-
ever, these quantities are not measured for in vivo preparations, and 
parameters yielding high SNR data are identified by trial and error 
(for example, dye concentration, viral vector titer and number of days 
after transfection to image).

Signal contamination. In densely labeled tissue, structures adjacent 
to cell bodies can contribute contaminating signals102. In areas such 

as neocortex, somata are distributed sparsely enough to make con-
tamination from adjacent cell bodies rare103, permitting moderate-
resolution imaging systems to accurately measure cellular-resolution 
dynamics92,103,104. However, in structures with densely packed cell 
bodies, such as the dentate gyrus of the hippocampus or cerebellar 
granular layer, cell-to-cell contamination cannot be ignored.

Calcium imaging of large populations typically leads to contami-
nation from signals arising in the neuropil: the axons and dendrites 
of nearby cells, whose activity produces a substantial contamination  
of the signal recorded at any cell soma91,105,106. Even with two- 
photon microscopy, axial resolution is often limited to several microns 
or more, although in-plane (lateral) resolution can be sub-micron 
(Fig. 3a). Furthermore, even high resolution (that is, high numeri-
cal aperture) imaging systems are precluded from realizing their full 
resolution in practice as a result of optical aberrations caused by brain 
tissue and the loss of marginal rays when imaging deep107,108. Imaging 
system aberrations can also limit resolution, particularly when 
imaging outside of the very center of the field of view109,110. GRIN 
lenses, used to access deep structures, also suffer from substantial  
aberrations111,112. Adaptive optics can compensate for aberrations 
of the focused excitation light113, but the emitted fluorescence pho-
tons are still subjected to scattering and aberrations in the tissue  
and optical systems. Neuropil contamination can be somewhat miti-
gated by expressing GECIs sparsely, for example, using transgenic 
mice with Thy1 promoters, or conditional viral strategies91,114–116. 
However, neuropil contamination represents a serious concern for 
calcium imaging. The neuropil signal reflects the summed activity 
of a large number of neurons, the majority of which will typically 
be located close to the imaged region, and it can therefore be tuned 
for similar stimuli or behavioral variables117. If not accounted for, 
neuropil contamination can lead to spurious conclusions about neu-
ronal encoding. It is therefore essential that this contamination be 
understood and, to the extent possible, removed during analysis. 
Approaches will be discussed below.

Motion artifacts. When imaging in living subjects, heartbeat, breathing 
and motor behavior can all contribute substantial movement artifacts. 
Although heartbeat-associated movements in the brain are typically 
on the order of 1 m or less118, breathing and motor behavior can 
cause larger movements of over 10 m119,120. Movement amplitudes  
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Figure 3 Subtracting neuropil contamination from raw fluorescence time 
courses. (a) In two-photon imaging, the point spread function (PSF) is 
elongated in the axial dimension even in high numerical aperture systems. 
Pixels in the borders of cell bodies still contain signals from the surrounding 
neuropil. (b) The GECI GCaMP6s was expressed in mouse visual cortex 
neurons, resulting in brightly labeled cell bodies and neuropil. (c) Binary 
masks for cell body ROIs (black) were identified semi-automatically 
and neuropil regions were algorithmically constructed (avoiding pixels 
belonging to other potential cell bodies or black regions). (d) Raw traces 
for the fluorescence time courses of the selected cells. (e) Fluorescence 
time courses for the background regions for each selected cell. Note the 
high temporal correlation. (f) Fluorescence time courses after background 
subtraction. Note the reduced mean correlation141. All traces have been 
scaled to the same maximum height to better exhibit details in the time 
courses. Image courtesy of J.N. Stirman, Y. Yu, S.L.S.
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vary by brain area and can be reduced by appropriate surgical prepa-
ration121. During movements, cells can change their pixel location in 
the imaging plane (XY), or in and out of the plane of focus (Z). If tem-
poral resolution is high enough to make frame-to-frame XY move-
ment small, movement can be corrected through image registration, 
such as global cross-correlation or line-by-line alignment117,122,123. 
Large and faster XY movements may require more complex model-
based algorithms119,124. Motion in Z is more difficult to correct, as 
the neighboring planes are typically not recorded. Generally, point 
spread functions (PSFs) are extended in Z, making motion artifacts 
resulting from small Z movements less problematic125,126. In cases 
with large Z movement, multiplane imaging127 and online motion 
correction120,128 can help to minimize artifacts.

Data processing. Before calcium imaging data can be used for sci-
entific analysis, it requires preprocessing, typically involving image 
alignment and motion correction; segmentation to find regions of 
interest (ROIs) corresponding to imaged cells; time course extraction; 
neuropil compensation; and, optionally, spike train estimation. In 
some analysis algorithms, multiple steps are performed in concert.

Segmentation and time course extraction. The simplest way to 
define ROIs corresponding to individual neurons is with binary 
masks, which can be drawn manually or with varying degrees of 
automation85. With binary masks, neuropil contamination must be 
estimated and subtracted out in a separate step, and can be estimated 
using either an average of the neuropil signal surrounding the cell of 
interest129 (Fig. 3b–f) or by subtracting the first principal component 
of the contamination130,131.

More ambitious approaches describe each pixel’s calcium signal as 
a superposition of signals from one or more cell bodies or processes, 
neuropil and potentially other sources (for example, instrumental 
noise). This is typically framed as a matrix factorization problem, 
where the spatial components (neuronal ROIs) and temporal com-
ponents (neuronal time courses) are simultaneously learned. As with 
spike sorting, the results of such automatic algorithms must be veri-
fied on a case-by-case basis. For example, methods based on principal 
component analysis and independent component analysis131,132 can 
identify negative temporal signals, which cannot represent neuronal 
time courses; these methods can also produce ROIs corresponding to 
multiple neurons or dendritic regions, as the algorithm has no prior 
information about the spatial extent of signal sources. Constrained 
non-negative matrix factorization, optimized for the particular char-
acteristics of calcium imaging data133,134 provides promising results 
even in the presence of signal crosstalk106, whereas a new combined 
clustering and factorization method may offer improvements in both 
accuracy and performance135. Given that matrix factorization meth-
ods separate temporally distinct patterns of activity, they may fail on 
neighboring cells that exhibit highly synchronous activity; a super-
vised learning approach might avoid this shortcoming96. Furthermore, 
any activity-dependent algorithm will be biased toward active cells; 
labeling cell nuclei with static (not calcium dependent) fluorescent 
proteins can help to identify cell bodies independent of activity117. 
Similarly, ‘dictionary’ methods have been developed to detect cells 
based on average and resting fluorescence activity, thereby finding a 
large number of inactive cells136.

Manually verifying the results of automatic algorithms is time 
consuming, but some simple automatic techniques can catch many 
artifacts. The zero-lag cross-correlation of ROI pairs can identify  
contamination of one cell’s signal by another. These correlations 
should usually be close to zero, rarely above 0.5 and values >0.8 

typically indicate contamination. Minor contamination can result 
in smaller increases in correlation values, and so time courses from 
nearby cells should be checked particularly closely. Correlation result-
ing from contamination should be more stable in time than correla-
tion resulting from neuronal firing, so rolling correlation analysis 
(with width substantially above that of a fluorescence transient) can 
help to identify unusually stable correlations resulting from contami-
nation. Excluding individual highly contaminated pixels will result 
in less contaminated ROIs. As genuine neuronal correlations can be 
affected by brain state, this analysis is best performed on data obtained 
under conditions of relative desynchronization (for example, stimu-
lus-evoked activity rather than spontaneous activity under anesthe-
sia). Finally, correlating the time series of individual pixels to stimulus 
and behavioral variables can help to diagnose artifacts.

Evaluation of segmentation approaches would benefit from a sys-
tematic comparison of algorithms against ground truth. Ground 
truth for segmentation can be hard to obtain, or even define, but 
options include hand annotation or coexpressing anatomical markers 
(for example, fluorescent proteins that are confined to the nucleus) 
that report the presence or absence of a neuron soma at a location. 
The Neurofinder challenge provides several ground truth data sets 
and a web application for comparing algorithm results (http:// 
neurofinder.codeneuro.org/). Ground truth data are also available 
from Collaborative Research in Computational Neuroscience (https://
crcns.org/data-sets/methods/cai-1). Surprisingly, nearly all segmen-
tation algorithms thus far have taken an unsupervised approach:  
trying to infer neurons directly from data, rather than by training a 
supervised model on existing annotations, as is common in object 
recognition, behavioral classification and anatomical segmentation  
(Apthorpe, N.J. et al. Automatic Neuron Detection in Calcium 
Imaging Data Using Convolutional Networks, arXiv, http://arxiv.org/
abs/1606.07372 (2016)). Especially with the availability of annotated 
data, supervised methods could be a fruitful avenue of exploration.

Spike inference. The calcium signal is only an indirect reflection of 
spiking. Many analysis approaches aim to derive from the calcium 
fluorescence time course of each neuron an estimate of firing rates 
or exact spike times.

The calcium signal can be approximated as a temporally filtered 
version of the spike train. Although the decay kinetics of this fil-
ter are typically slow (half-decay times are hundreds to thousands 
of milliseconds), its rise kinetics can be fast (times to peak are tens 
of milliseconds). The simplest approach is therefore deconvolution 
with an estimated unitary response, such as an instantaneous rise 
and exponential decay137,138. In practice, deconvolution perform-
ance is limited by several factors. The relationship between calcium 
signals and spiking is complex, nonlinear and varies across neurons, 
especially during spike bursts. With GCaMP6f, for example, spike 
pairs can exhibit fluorescence transients whose size depends on the 
inter-spike interval (personal communication, D. DiGregorio and S. 
Wang). As with segmentation, supervised learning methods using 
systematic ground truth data are a promising alternative to unsuper-
vised deconvolution87. With present technology, estimates of spike 
times from calcium imaging should always be treated as approxima-
tions, although this uncertainty can be propagated through stages of 
analysis (Fig. 4)133.

Estimation of spike times is not necessary for many scientific ques-
tions. When neurons fire sparsely, for example, neuronal responses 
can be characterized by how the calcium response itself depends on 
stimulus or behavioral-related factors. The results of such analyses 
will not be numerically identical to analyses computed from actual 
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counts (for example when computing correlations among neurons), 
but if interpreted correctly, this can avoid biases introduced by 
explicit spike estimation. This concept is explicitly formulated in 
hierarchical models that describe the calcium response as a function 
of spike times, which are in turn a function of the stimulus and/or 
behavior. The parameters of such an ‘encoding’ function can be esti-
mated directly without explicitly estimating spike times, instead treat-
ing them as latent factors (for example, see refs. 139,140). Finally, 
spike detection can be simply viewed as a nonlinear denoising step 
to remove spurious low-amplitude signals, rather than an explicit 
estimator of spike times; in this view, procedures based on template 
matching, which are more flexible and less computationally expen-
sive, may be appealing117.

Ground truth from electrophysiology. Experiments verifying two-
photon calcium imaging with ground truth from simultaneous on-cell 
electrophysiology have yielded encouraging results. It is important 
to match the imaging parameters between ground truth data sets 
and actual experiments: highly zoomed-in imaging offers a best-case 
scenario about how faithfully an indicator might report spiking, but 
may vary markedly from those obtained when imaging is zoomed-out  
to increase the number of neurons imaged (which also decreases 
the SNR of recorded cells). Single action potentials can be resolved 
>80% of the time in optimized systems, and multi-spike bursts are 
even more reliably detected91,141. However, estimates of the number 
of spikes in multi-spike bursts is typically imprecise and, in practice, 
larger fields of view decrease SNR and lead to overall correlation coef-
ficients between 0.1 and 0.5 (ref. 87), although this has ranged up to 
0.8 in some studies118,141.

In some cases, it is impossible to perform calibration electrophysi-
ology experiments. For example, the small working distance of GRIN 
lenses largely precludes correlative electrophysiology. Similarly, with 
air immersion objectives, simultaneous electrophysiology would so 
perturb the optical setup as to yield it largely irrelevant. In these cases, 
where ground truth is unobtainable, experiments should be designed 
to be insensitive to the expected imprecision of spike inference. To 
bracket the precision of the estimated spike trains, experimenters can 
compare their data to electrophysiological recordings under simi-
lar circumstances. For example, data from extracellular recordings 
in mouse visual cortex can provide a baseline for calcium imaging  
studies, setting both the expected spontaneous firing rates and 
expected distribution of maximal firing rates in mouse visual cortex 
in response to drifting grating visual stimuli71, bearing in mind the 
selection bias in electrophysiology toward active cells.

Summary
Calcium imaging and extracellular electrophysiology can both pro-
vide high-fidelity readouts of neuronal population activity. They have 
complementary advantages: electrophysiology allows detection of  
single action potentials with submillisecond timing in deep structures  
and multiple brain areas, whereas calcium imaging can provide a com-
prehensive and less-biased view of a local population and interfaces 

easily with the genetic toolkit required to identify neurons by cell 
type or connectivity.

Both methods are subject to experimental confounds, most nota-
bly spike-sorting errors for electrophysiology and signal contami-
nation for calcium imaging. Although these confounds cannot be 
avoided, they can be mitigated through careful experimental design. 
Furthermore, a detailed understanding of causes and consequences 
of these confounds makes erroneous scientific conclusions unlikely if 
they are used carefully. When objective measures of data quality exist, 
it is important that these are used and documented together with 
the scientific conclusions drawn. To gain a truly quantitative under-
standing of the error rates likely to occur in population recordings, 
however, it is essential that substantial further effort be put into col-
lecting ground truth data calibrating these techniques against reliable  
measures of neural activity.
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