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TOPICS

@ anatomy of single neurons

@ resting and action potentials

@ transmission of signals

© chemical and electrical synapses
@ information coding

@ BOLD and unit activity

O EEG & SITE

© MR-visible effects



TYPES OF NEURONS
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OBSERVED |ON CONCENTRATIONS
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STRUCTURE OF THE CELL MEMBRANE

Extracellular Fluid Glycoprotein
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Note: E-field is >10 MV/m!

Taken from Human Biology by Daniel Chiras




Electrical Behavior of Neurons
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Current and Voltage

100 —
_ Sodium Permeability
Transient conductance increase
o] Potassium Permeability
_ \oltage-dependent conductance
0 ———— /
Neurons are REFRACTORY
_ after each Action Potential
0 Membrane Potential
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1 ms After Hodgkin and Huxley, 1952
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SODIUM LEAKAGE WITH ACTION POTENTIALS

Cell Volume =9 x 10 13 liters,
about half of which is liquid. ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ[*lllllllllllll

At 40 mM Sodium:
= 4.0 x 10" Moles Sodium/cell

Na+

With Each Action Potential:
AV = 0.13 Volt

Q=CV =1.3 x 107 Coulombs /cm?
= 1.4 x 1012 Moles/cm?

Surface Area = 2.8 x 10~ cm? C = TuF/cm?
Each AP passes 3.7 x 107 Moles of Na+

[Na+] is increased by 0.1% with each Action Potential!

Cohen. IEEE, 2009




PASSIVE FIRING OF ACTION
POTENTIALS

J. Physiol. (1962), 164, pp. 330-354
With 5 plates and 12 text-figures
Printed in Great Britain
REPLACEMENT OF THE AXOPLASM OF GIANT NERVE
FIBRES WITH ARTIFICIAL SOLUTIONS

By P. F. BAKER, A. L. HODGKIN axp T. I. SHAW

Rubber-covered ¥

Main

Period stimula-

of tion fre-
Tempera- stimula- quency Number

Diameter ture Internal tion  (shocks/ of
Row Axon  (pu) (°C) Condition solution (min) sec) impulses
1 59 770 15  Fully inflated K- isethionate 120 50 3-6x10°
2 101 720 21  409% inflated K,SO, 80 50 2-3x10%
3 114 880 18 609 inflated XK,SO, 120 50 4-1x10°
4 115 810 18  Intact Axoplasm 107 50 3-9x10®
5

118 750 195 Intact Axoplasm 186 126 1-1x10°
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Sodium Potassium Pump

After Matthews and van Holde: Biochemistry 2/e

Initial State
Pump Open to Inside

Potassium Expelled to
Inside

Na+ Taken from Inside

Dephosphorylation

Stimulates Conformation
Change

ATP Phosphorylates o
Subunit and Stimulates
Conformation Change
o,
5%
)
.)

Two Potassium

lons Accepted K+
from Outside

Pump Open to Outside
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Cable Properties

Extracellular

mS =C, mS ==C, ImS =C, ImS =C. ——
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Cable Properties

Extracellular

mS =Cp 'mS —=Cp, TmS —=C, ImS =C, Sl
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[ r r [
Intracellular X

m
3

J For vertebrate neurons. 0.5
msec < T < 5 MSseC
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Propagation of the Action Potential

Resulting Velocity ~1-3msec

Center for ;
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Propagation of the Action Potential

0 —+—— i i | | | |

thresh _/Awesh

Resulting Velocity ~1-3msec
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Propagation of the Action Potential
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Resulting Velocity ~1-3msec
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Propagation of the Action Potential

Resulting Velocity ~1-3msec
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Propagation of the Action Potential

Resulting Velocity ~1-3msec
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Propagation of the Action Potential
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Propagation of the Action Potential
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Propagation of the Action Potential

Resulting Velocity ~1-3msec
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Propagation of the Action Potential
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Resulting Velocity ~1-3msec
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NODES OF RANVIER




SALTATORY CONDUCTION

Internode:

High Membrane Resistance
Long Spatial Constant

Short Time Constant

Efficient Electrotonic Conduction

Myelin

Node:

Low Membrane Resistance
High Membrane Current Flow
Fires Action Potential

Action Potential Regeneration
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WHITE AND GRAY MATTER

Trans-Cal ossal

Fibers PARIETAL FIBRES —_

FRONTAL
FIBRES

OCCIPITAL~__
FIBRES "o

e

TEMPORAL

Radiations FIBRES

After. Catani, et al,, Neurolmage 17:77,2002
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EPSP’S: EXCITATORY POST-SYNAPTIC POTENTIALS

_L_a._.n.ML_p_...__L__J.L_LLL_“

Muscle end plate potentials
Recorded in low Ca?* / high Mg?* YT VY VO W T W
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Boyd and Martin. J Physiol, 132. 1956




REVERSAL POTENTIAL

Outward epsp’s result from increased K+
200 ith

Extra-cellular fluid

After Magleby and Stevens. ] Physiol. 223, 1972
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NEURAL SYNAPSE

Microtubules

Synaptic vesicles

-

Synaptic Bouton .
Synaptic Cleft

Synaptic Cleft

Golgi Complex
Synaptic vesicles
Mitochondrion
Dendritic Spine
Presynaptic Membrane Postsynaptic Membrane

http://wwwdriesen.com/synapse.htm

I — S
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SYNAPSES BY EM

% ﬁlr!'\"“'

Atlas of Ultrastructural Neurocytology
http://synapses.mcgedu/atlas/T_6_1.stm

A —— T—
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SYNAPTIC MECHANISM (MOVIE)

& Digital Frog Intermational
wnanadigitalfrog.com

Delay from Presynaptic
Action Potential to
Post-synaptic Voltage
Change is = 0.5 msec
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SYNAPTIC VESICLES

Synaptic vesicle

Synaptotagmin_ e

o

Ca?* channel ~ Ca2* channel
CaZt Syntaxin SNAP-25 Cast

Exocytosis of Transmitter requires Ca’*

Matthews, G. Neurobiology: Molecules, Cells and Systems 2nd ed
T — S
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NEUROTRANSMITTERS

Small Molecules
Acetylcholine
Serotonin
Histamine
Epinephrine
Norepinephrine
Dopamine
Adenosine
ATP
Nitric Oxide

Amino Acids
Aspartate
Gamma-aminobutyric Acid
Glutamate
Glycine

Peptides
Angiotensin |l
Bradykinin
Beta-endorphin
Bombesin
Calcitonin
Cholecystokinin
Enkephalin
Dynorphin
Insulin
Galanin
Gastrin
Glucagon
GRH
GHRH

Motilin

Neurotensin

Neuropeptide Y

Substance P

Secretin

Somatostatin

Vasopressin

Oxytocin

Prolactin

Thyrotropin

THRH

Luteinizing Hormone

Vasoactive Intestinal Peptide
...and many others
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ELECTRICAL SYNAPSES

Junction

50 nm
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GAP JUNCTION MICROSTRUCTURE

Gap Junctions have no
. synaptic delay, and
Gap Junctiog Connexon may act assimple

Channel resistance or as
electrical rectifiers

Connexon
Subunit

Intercellular Gap

Modified from: http://aids.hallym.ackr
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SPATIO T EMPORAL SUMMATION OF PSP’S

Summated epsp’s

http//www.oseplus.de/lmages/jpg/Synapse 1 jpg
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INTEGRATION OF INPUTS
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DENDRITIC SPINES

L | ]_p_m

Atlas of Ultrastructural Neurocytology
[— —
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HOW DO NEURONS ENCODE
INFORMATION/!




HOW DO NEURONS ENCODE
INFORMATION/!

© Firing Rate: Ranges up to 1000 spikes/second

© Labeled Channels: Each neuron has different
iInformation content

© Modification of Synaptic Efficacy
© Firing Synchrony

© Transmitter Identity
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PLACE ENCODING - BASILAR MEMBRANE




INHIBITION

-60 —

- 70 %——\/ ............

-80 —

0 5 10 15 ms

Cl-influx

Reversal potential of Cl-is near the
resting potential. Therefore, its
Inhibition may be silent.



PRE-SYNAPTIC INHIBITION

: nhibitory Synapse

Excitatory Synapse



WHAT MIGHT WE DETECT?

©Energy Demand

©Direct Electrical Signaling
©Morphological Differences
©@Chemical Concentrations
©Tissue Density
OFat/Water

®etc...
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BOLD AND NEURAL FIRING?

Energy Demands in Transmission
Pre-synaptic:

Transmitter Synthesis
Exocytosis
Transmitter re-uptake

Post-Synaptic
Excitatory: Removal of Sodium (Na/K pump)
Maintenance of membrane potential after ion leakage
Inhibitory: 7%



CORTICAL COLUMN

Wilson. PNAS 97,2000
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IMAGING VOXELS
AND NEUROPIL
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Axon terminals

TYPES OF NEURONS

ey gt

\

-\

Dendrites
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PRESUMED ORIGIN OF THE EEG

L
+ * _

Skin
Bone
CSF

Cortex




MANY NEURONS ARE NOT “SEEN" BY EEG

Skin

Bone

CSF

__

-



GENERAL LIMITATIONS IN EEG
L OCALIZATION

© Deeper Sources Show Weaker Signals

© Magnitude Depends on Dipole Orientation
© Magnitude Depends on Temporal Synchrony
© Magnitude Depends on Spatial Coherence

@ Conductivity of Body Tissues (CSF scalp) Blur the Scalp Potentials
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FEEG AT REST
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ALPHA MAPPING

spectral power in the alpha band

time (minutes)
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SITE OF RESTING ALPHA
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EEG-FMRI ISSUES

@ Scalp Potentials are Proportional to the Derivative of the
Voltage, whereas fMRI is Proportional to the Integral of the
Firing

© The Action Potential, per se, Is Probably Invisible to BOLD

© The Rhythmic Structures in the EEG May Depend More on
Synchronous Firing than on High Firing Rate

© The BOLD Signal is Likely Associated with the Post-Synaptic
Neurons

Cohen, IEEE, 2009

—————
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MR-LUCENT NEUROPHYSIOLOGY

Energetic Demands ... (BOLD, AL)
Transmitter Synthesis, Exocytosis, Metabolism
Na+/K+ Pump

s Imaging

Glucose Metabolism Soectroscopy
Extracellular Currents (’?) ................ Phase Disturbance
Anisotropic Diffusion DTI, etc...

Neural Constituents (NAA) Spectroscopy
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A DELICATE BALANCE

Angelo Mosso. Atti R Accad Lincei Mem Cl Sci Fis Mat Nat, 1884 ;XIX:531-43
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WILLIAM JAMES (1890)

" o

“W@W&%ﬁ/}mwue{y(/em
W but of this we know nothing.” 8 :
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27 March 1981 * Vol. 211 * No. 4489 $2.00

SCIENCLELE

AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE
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Al Darkness
oM Flashing Lights

4 ..
injection

NMR Signal (%)
0¢}
o

0 10 20 30 40
Time (seconds)

195920 | 4

http://www.nmrmgh.harvard.edu/in-memoriam-jack-belliveau

Jack Belliveau
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A DELICATE BALANCE: REPRISE

i I
;‘ ~ - : Il
3 ‘33’_ i iy ‘
e s A
o [ B=:
S s

Pauling and Corvyell. PNAS 22, 1936
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SIGNAL LOSSES
DEPHASI

-ROM SPIN

NG

Inhomogeneous Magnetic Fields Within Voxels Result in Spin

DephasingfandiSignal Loss in Gradient

B

Capillary

Echo Sequences

Gradients of several Gauss/cm

may exist near deoxy-Hb-filled
capillaries.
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MRI| Relaxation Rate and HbO?2

Percentage Hemoglobin Oxygenation
0 25 50 75 100

60

9 4
T
ad
C
O

g 20
Q
ad

0

1 0.75 0.5 0.25 0
(Hb/(Hb+HbO,))?

Thulborn, et al,, Biochimica et Biophysica Acta 714, 1982
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Effect of blood CO; level on BOLD contrast.
(a) Coronal slice brain image showing BOLD contrast from a rat
anesthetized with urethane.The gas inspired was 100% Ox.

(b) The same brain but with 90% O3/ 10%CO; as the gas
inspired. BOLD contrast is greatly reduced.

S Ogawa, et al.,

PNAS, 87(24):9868,1990
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FMRI

explores intensity variations in MR signal

intensity variations reflect venous [O2]
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WHY DOES VENOUS O, INCREASE!,

98%
00I 60% 65%
%

in ‘ein

Under normal conditions oxygen
diffuses down its concentration gradient
from the capillary to the brain
parenchyma
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WHY DOES VENOUS O, INCREASE!.,

98%

Artery Brain  Vein

floW iy

As the brain becomes more active, the
oxygen consumption increases,
Increasing the transluminal oxygen
gradient.
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WHY DOES VENOUS O, INCREASE!,

98%

% I 30% 32%
%0
e rain

As oxygen flows across the capillary
lumen it is depleted in the capillary and
no further oxygen can be delivered
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WHY DOES VENOUS O, INCREASE! .,

98%

I 30% 65%
0,

Artery Brain  Vein

The vascular system responds by
increasing blood flow so that more
oxygenated blood is available
throughout the capillary
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WHY DOES VENOUS O, INCREASE!

98%

I 30% 65%
0,

Artery Brain  Vein

Because the blood flow is increased
more oxygenated blood passes into the
venous end of the capillary
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WHY DOES VENOUS O, INCREASE!,

With the Concentration Gradient

Maintained Oxygen is Delivered to the
Brain Parenchyma

76



GRADIEN T-RECALLE

D EC

Photic Stimulation -- GE Images
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Ken Kwong
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Ken Kwong

INVERSION RECOVERY
TE=42 TR=3000
TI= 1100
THICKNESS=10

Seiji Ogawa Ken Kwong
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BRAIN MAPPING - HEMIFIELD ALTERNATION

right hemisphere
left hemisphere
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ACTIVATION WITH MOVING VISUAL STIMUL




CONTRAST RESPONSE TEST

1.6% 6.3% 25% 78% 82%

60 120 180 240 300 360
Time (seconds)

From R. Tootell
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MOTION SENSITIVITY TEST

1 MT
.
1vi
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0 60 120 180 240 300 360

Time (seconds)

From R. Tootell
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TRADITIONAL MRI ANALYSIS

Task Timing T

- Observed Signals -

A~V TN AT A

0 50 100 150




PARAMETRIC MRI| ANALYSIS - MODEL DRIVEN

Hemodynamic
Response Model

|

1t
0.5/\
0

0

Task Model

S

M Signal Model |

Cohen, Neurolmage 6, 1997

50 100

150




STIMULUS - HRF CONVOLUTION

40

30 Actual
Response

. 20
% increase
over baseline
10

stim stim

Convolution
Model

60 80 100
Time (seconds)

Cohen, Neurolmage 6, 1997
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AMPLITUDE-WEIGHTED LINEAR ESTIMATE
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Residual Error

120 160 200 240
Time (seconds)

Cohen, Neurolmage 6, 1997







