NEURONAL SIGNALING +THE BOLD EXPERIMENT

Mark Cohen, UCLA

TOPICS

- anatomy of single neurons
- resting and action potentials
- transmission of signals
- end chemical and electrical synapses
- information coding
- BOLD and unit activity
- EEG & SITE
- MR-visible effects

Types of Neurons

RESTING POTENTIAL

DEVELOPMENT OF THE MEMBRANE POTENTIAL

DEVELOPMENT OF THE MEMBRANE POTENTIAL

DEVELOPMENT OF THE MEMBRANE POTENTIAL

OBSERVED ION CONCENTRATIONS

STRUCTURE OF THE CELL MEMBRANE

Note: E-field is >10 MV/m!

Taken from Human Biology by Daniel Chiras

Electrical Behavior of Neurons

Current and Voltage

SODIUM LEAKAGE WITH ACTION POTENTIALS

Cell Volume = 9×10^{-13} liters, about half of which is liquid.

At 40 mM Sodium: = 4.0 x 10⁻¹⁴ Moles Sodium/cell

With Each Action Potential:

$$\Delta V = 0.13 \text{ Volt}$$

 $Q = CV = 1.3 \times 10^{-7} \text{ Coulombs /cm}^2$
 $= 1.4 \times 10^{-12} \text{ Moles/cm}^2$

Surface Area = $2.8 \times 10^{-5} \text{ cm}^2$ Each AP passes $3.7 \times 10^{-17} \text{ Moles of Na+}$

[Na+] is increased by 0.1% with each Action Potential!

Cohen. IEEE, 2009

PASSIVE FIRING OF ACTION POTENTIALS

J. Physiol. (1962), 164, pp. 330-354 With 5 plates and 12 text-figures Printed in Great Britain

REPLACEMENT OF THE AXOPLASM OF GIANT NERVE FIBRES WITH ARTIFICIAL SOLUTIONS

By P. F. BAKER, A. L. HODGKIN AND T. I. SHAW

Sodium Potassium Pump

Cable Properties

$$\frac{V_x}{V_0} = e^{-x/\lambda}$$

$$\lambda = \sqrt{r_m/r_i}$$

For vertebrate neurons: μm $< \lambda < mm$

Cable Properties

For vertebrate neurons: 0.5 $msec < \tau < 5 msec$

Myelin Sheath

©2016 Mark Cohen, all rights reserved www.brainmapping.org

Myelin Sheath

NODES OF RANVIER

©2016 Mark Cohen, all rights reserved www.brainmabbing.org

SALTATORY CONDUCTION

White and Gray Matter

After: Catani, et al., Neurolmage 17:77, 2002

©2016 Mark Cohen, all rights reserved www.brainmapping.org

EPSP'S: EXCITATORY POST-SYNAPTIC POTENTIALS

Boyd and Martin. J Physiol, 132. 1956

REVERSAL POTENTIAL

After Magleby and Stevens. J Physiol. 223, 1972

Neural Synapse

http://www.driesen.com/synapse.htm

SYNAPSES BY EM

Atlas of Ultrastructural Neurocytology http://synapses.mcg.edu/atlas/1_6_1.stm

SYNAPTIC MECHANISM (MOVIE)

Delay from Presynaptic Action Potential to Post-synaptic Voltage Change is ≈ 0.5 msec

SYNAPTIC VESICLES

Exocytosis of Transmitter requires Ca²⁺

Matthews, G. Neurobiology: Molecules, Cells and Systems 2nd ed

Neurotransmitters

Small Molecules

Acetylcholine

Serotonin

Histamine

Epinephrine

Norepinephrine

Dopamine

Adenosine

ATP

Nitric Oxide

Amino Acids

Aspartate

Gamma-aminobutyric Acid

Glutamate

Glycine

Peptides

Motilin Angiotensin II

Bradykinin Neurotensin Beta-endorphin Neuropeptide Y

Bombesin Substance P

Calcitonin Secretin

Cholecystokinin Somatostatin Enkephalin **Vasopressin** Dynorphin

Oxytocin Insulin **Prolactin**

Galanin Thyrotropin

Gastrin **THRH**

Luteinizing Hormone Glucagon

GRH Vasoactive Intestinal Peptide **GHRH**

...and many others

ELECTRICAL SYNAPSES

GAP JUNCTION MICROSTRUCTURE

Modified from: http://aids.hallym.ac.kr

SPATIOTEMPORAL SUMMATION OF PSP'S

http://www.oseplus.de/Images/jpg/Synapse1.jpg

INTEGRATION OF INPUTS

©2016 Mark Cohen, all rights reserved www.brainmabbing.org

DENDRITIC SPINES

[⊥] 1 μm

Atlas of Ultrastructural Neurocytology

HOW DO NEURONS ENCODE INFORMATION?

©2016 Mark Cohen, all rights reserved

www.brainmabbing.o

HOW DO NEURONS ENCODE INFORMATION?

- Firing Rate: Ranges up to 1000 spikes/second
- Labeled Channels: Each neuron has different information content
- Modification of Synaptic Efficacy
- Firing Synchrony
- Transmitter Identity

Place Encoding - Basilar Membrane

©2016 Mark Cohen, all rights reserved

www.brainmabbing.or

INHIBITION

Reversal potential of Cl⁻ is near the resting potential. Therefore, its inhibition may be silent.

PRE-SYNAPTIC INHIBITION

©2016 Mark Cohen, all rights reserved

www.brainmabbing.o

47

WHAT MIGHT WE DETECT?

- Energy Demand
- Direct Electrical Signaling
- Morphological Differences
- Chemical Concentrations
- Tissue Density
- Fat/Water
- etc...

BOLD AND NEURAL FIRING?

Energy Demands in Transmission

Pre-synaptic:

Transmitter Synthesis

Exocytosis

Transmitter re-uptake

Post-Synaptic

Excitatory: Removal of Sodium (Na/K pump)

Maintenance of membrane potential after ion leakage

Inhibitory: ???

CORTICAL COLUMN

Wilson. PNAS **97**, 2000

IMAGING VOXELS AND NEUROPIL

Types of Neurons

MANY NEURONS ARE NOT "SEEN" BY EEG

General Limitations in EEG Localization

- Deeper Sources Show Weaker Signals
- Magnitude Depends on Dipole Orientation
- Magnitude Depends on Temporal Synchrony
- Magnitude Depends on Spatial Coherence
- Conductivity of Body Tissues (CSF, scalp) Blur the Scalp Potentials

EEG AT REST

©2016 Mark Cohen, all rights reserved

Ι00μ۷

I sec

www.brainmabbing.org

ALPHA MAPPING

SITE OF RESTING ALPHA

Goldman (2002)

Reference

(18):2487

EEG-FMRI Issues

- Scalp Potentials are Proportional to the **Derivative** of the Voltage, whereas fMRI is Proportional to the **Integral** of the Firing
- The Action Potential, per se, Is Probably Invisible to BOLD
- The Rhythmic Structures in the EEG May Depend More on **Synchronous** Firing than on **High Firing Rate**
- The BOLD Signal is Likely Associated with the Post-Synaptic Neurons

MR-LUCENT NEUROPHYSIOLOGY

Energetic Demands (BOLD, ASL)	
Transmitter Synthesis, Exocytosis, Metabolism	
Na+/K+Pump	
[Na+]	Imaging
Glucose Metabolism	Spectroscopy
Extracellular Currents (?)	Phase Disturbance
Anisotropic Diffusion	DTI, etc
Neural Constituents (NAA)	Spectroscopy

BOLD

A DELICATE BALANCE

Angelo Mosso. Atti R Accad Lincei Mem Cl Sci Fis Mat Nat, 1884;XIX:531-43

WILLIAM JAMES (1890)

"We must suppose a very delicate adjustment whereby the circulation follows the needs of the cerebral activity.

Blood very likely may rush to each region of the cortex according as it is most active, but of this we know nothing."

©2016 Mark Cohen, all rights reserved www.brainmapping.org 64

http://www.nmr.mgh.harvard.edu/in-memoriam-jack-belliveau

A Delicate Balance: Reprise

Pauling and Coryell. PNAS 22, 1936

SIGNAL LOSSES FROM SPIN DEPHASING

MRI Relaxation Rate and HbO2

Thulborn, et al., Biochimica et Biophysica Acta 714, 1982

BOLD

Effect of blood CO₂ level on BOLD contrast.

- (a) Coronal slice brain image showing BOLD contrast from a rat anesthetized with urethane. The gas inspired was $100\% O_2$.
 - (b) The same brain but with 90% $O_2/10\%CO_2$ as the gas inspired. BOLD contrast is greatly reduced.

S Ogawa, et al., PNAS, **87**(24):9868,1990

FMRI

explores intensity variations in MR signal

intensity variations reflect venous [O2]

Why Does Venous O2 Increase?

Under normal conditions oxygen diffuses down its concentration gradient from the capillary to the brain parenchyma

Why Does Venous O2 Increase?

As the brain becomes more active, the oxygen consumption increases, increasing the transluminal oxygen gradient.

Why Does Venous O₂ Increase? (3)

As oxygen flows across the capillary lumen it is depleted in the capillary and no further oxygen can be delivered

Why Does Venous O2 Increase?

The vascular system responds by increasing blood flow so that more oxygenated blood is available throughout the capillary

Why Does Venous O2 Increase? (5)

Because the blood flow is increased more oxygenated blood passes into the venous end of the capillary

Why Does Venous O₂ Increase?

With the Concentration Gradient
Maintained Oxygen is Delivered to the
Brain Parenchyma

GRADIENT-RECALLED ECHO

Ken Kwong

INVERSION RECOVERY
TE=42 TR=3000
TI = 1100
THICKNESS=10

Seiji Ogawa

Ken Kwong

©2016 Mark Cohen, all rights reserved

www.brainmabbing.org

Brain Mapping - Hemifield Alternation

ACTIVATION WITH MOVING VISUAL STIMULI

©2016 Mark Cohen, all rights reserved www.brainmabbing.org

Contrast Response Test

From R. Tootell

MOTION SENSITIVITY TEST

From R. Tootell

Traditional MRI Analysis

PARAMETRIC MRI ANALYSIS - MODEL DRIVEN

Cohen, Neurolmage **6**, 1997

STIMULUS - HRF CONVOLUTION

Cohen, Neurolmage 6, 1997

Amplitude-Weighted Linear Estimate

Cohen, Neurolmage 6, 1997

